Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道
dc.contributor.authorHsien-Cheng Chenen
dc.contributor.author陳賢誠zh_TW
dc.date.accessioned2021-06-08T01:49:33Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation[1] Basic Linear Algebra Subprograms, Wikipedia, https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
[2] Billeter, M., Olsson, O., Assarsson, U., “Efficient Stream Compaction on Wide SIMD Many-Core Architectures,” In Proceedings of the Conference on High Performance Graphics, New York, pp. 159–166, 2009.
[3] Bischof, C.H., Van Loan, C., “The WY Representation for Products of Householder Matrices,” Department of Computer Science, Cornell University, 1985.
[4] Ching-Wen Chen‚ Kuan-Lin Huang, Yuh-Dauh Lyuu, “Accelerating the Least-Square Monte Carlo Method with Parallel Computing,” Journal of Supercomputing, Vol. 71, No. 9, pp. 3593–3608, 2015.
[5] CUDA, Wikipedia, https://zh.wikipedia.org/wiki/CUDA
[6] Harris, M., Sengupta, S., Owens, J.D., “Parallel Prefix Sum (Scan) with CUDA,” GPUGems3 (Chapter 39), Boston: Addison-Wesley, 2007.
[7] Hull, J.C., Options, Futures, and Other Derivatives, 8th Edition, Upper Saddle River, NJ: Prentice-Hall, 2011.
[8] Intel Corporation, Intel Math Kernel Library Reference Manual, Santa Clara, CA: Intel, 2007.
[9] Kerr, A., Campbell, D., Richards, M., “QR Decomposition on GPUs,” In Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-2), New York, pp. 71–78, 2009.
[10] Longstaff, F.A., Schwartz, E.S., “Valuing American Options by Simulation: A Simple Least-Squared Approach,” Review of Financial Studies, Vol.13, No.1, pp.113–147, 2001.
[11] NVIDIA Corporation, CUDA Programming Guide, Version 7.5, Santa Clara, CA: NVIDIA, 2015.
[12] NVIDIA Corporation, CUDA Toolkit Version 7.5 CUBLAS Library, Santa Clara, CA: NVIDIA, 2015.
[13] QR Decomposition, Wikipedia, https://en.wikipedia.org/wiki/QR_decomposition
[14] Spataro, D., Stream Compaction on GPU – Efficient Implementation – CUDA, http://www.davidespataro.it/cuda-stream-compaction-efficient-implementation/
[15] 周秉誼, GPU高效能運算環境—CUDA與GPU Cluster介紹, http://www.cc.ntu.edu.tw/chinese/epaper/0012/20100320_1205.htm
[16] 周志成, Householder變換於 QR 分解的應用, 線代啟示錄, https://ccjou.wordpress.com/2011/05/24/householder-%E8%AE%8A%E6%8F%9B%E6%96%BC-qr-%E5%88%86%E8%A7%A3%E7%9A%84%E6%87%89%E7%94%A8/
[17] 最小平方法, http://baike.baidu.com/view/139822.htm?fromtitle=%E6%9C%80%E5%B0%8F%E5%B9%B3%E6%96%B9%E6%B3%95&fromid=7022192&type=syn
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19225-
dc.description.abstract最小平方蒙地卡羅法是一種美式選擇權的評價方法。此方法通常計算量很大,需要花費許多運算時間,才能得出最終價格。在本篇論文中,我們以資料平行(data parallelism)的方式,將原本最小平方法蒙地卡羅法依路徑,分為許多互相獨立的組。在最小平方法的部分,我們採用QR分解進行求解。我們在GPU上使用CUDA針對美式賣權實作此平行方法,並且與在CPU上的循序版本做比較。
數值實驗的結果顯示當所分的組越多時,所花的執行時間就越少,但相對找出來的賣權價格也會越高估。
zh_TW
dc.description.abstractLeast-squares Monte Carlo method (LSM) is a method for pricing American options. The approach can give accurate option prices but it is computation intensive. In this thesis we use data–parallelism techniques to accelerate LSM with GPUs; that is, we will divide the computation paths into mutually independent groups. As for the least-squares calculation, QR decomposition is employed. The program is implemented by using CUDA to run on GPUs. The numerical results are compared with a sequential program’s on CPUs.
The experiment results show that the more groups are created, the less time it takes to execute.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:49:33Z (GMT). No. of bitstreams: 1
ntu-105-R03922022-1.pdf: 1376468 bytes, checksum: aef49f35f1ae19b7669886d313231fbf (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
第一章 導論 1
1.1 簡介 1
1.2 論文架構 3
第二章 背景知識 4
2.1 選擇權簡介 4
2.2 最小平方蒙地卡羅法(Least-Squares Monte Carlo Method) 5
2.3 CUDA(Compute Unified Device Architecture)簡介 8
2.4 最小平分法–QR分解 12
2.5 Stream Compaction 16
2.6 BLAS數學函式庫工具 20
第三章 實驗設計 21
第四章 實驗結果分析 23
第五章 結論與展望 28
5.1 結論 28
5.2 未來展望 28
參考文獻 29
dc.language.isozh-TW
dc.title使用圖型處理器加速最小平方蒙地卡羅法zh_TW
dc.titleUsing GPU to Accelerate the Least-Squares Monte Carlo Methoden
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時,張經略
dc.subject.keyword最小平方蒙地卡羅法,資料平行,圖型處理器,統一計算架構,zh_TW
dc.subject.keywordLeast-squares Monte Carlo,data parallelism,Graphic Processing Unit (GPU),Compute Unified Device Architecture (CUDA),en
dc.relation.page31
dc.identifier.doi10.6342/NTU201600229
dc.rights.note未授權
dc.date.accepted2016-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved