Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19222
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorJun-Yu Heen
dc.contributor.author何郡育zh_TW
dc.date.accessioned2021-06-08T01:49:27Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation張文彥 (2011). 碩士論文 : microRNA-206藉由抑制其新型專一標的基因調控斑馬魚胚胎之肌肉發育。臺灣大學分子與細胞生物學研究所。
盧慕蓉 (2012). 碩士論文 : microRNA-206 藉由抑制其標的基因調控斑馬魚體節邊界的生成。臺灣大學分子與細胞生物學研究所。
Abdesselem, H., Shypitsyna, A., Solis, G.P., Bodrikov, V., and Stuermer, C.A. (2009). No Nogo66- and NgR-mediated inhibition of regenerating axons in the zebrafish optic nerve. J Neurosci 29, 15489-15498.
Acevedo, L., Yu, J., Erdjument-Bromage, H., Miao, R.Q., Kim, J.E., Fulton, D., Tempst, P., Strittmatter, S.M., and Sessa, W.C. (2004). A new role for Nogo as a regulator of vascular remodeling. Nat Med 10, 382-388.
Adams, J., and Lawler, J. (1993). Extracellular-Matrix - the Thrombospondin Family. Curr Biol 3, 188-190.
Adams, J.C., and Lawler, J. (2011). The Thrombospondins. Cold Spring Harbor perspectives in biology 3.
Anderson, C., Catoe, H., and Werner, R. (2006). MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34, 5863-5871.
Anilkumar, N., Annis, D.S., Mosher, D.F., and Adams, J.C. (2002). Trimeric assembly of the C-terminal region of thrombospondin-1 or thrombospondin-2 is necessary for cell spreading and fascin spike organisation. Journal of cell science 115, 2357-2366.
Aulehla, A., and Pourquie, O. (2008). Oscillating signaling pathways during embryonic development. Curr Opin Cell Biol 20, 632-637.
Aulehla, A., and Pourquie, O. (2010). Signaling gradients during paraxial mesoderm development. Cold Spring Harbor perspectives in biology 2, a000869.
Barrios, A., Poole, R.J., Durbin, L., Brennan, C., Holder, N., and Wilson, S.W. (2003). Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr Biol 13, 1571-1582.
Bentzinger, C.F., Wang, Y.X., and Rudnicki, M.A. (2012). Building Muscle: Molecular Regulation of Myogenesis. Cold Spring Harbor perspectives in biology 4.
Brosamle, C., and Halpern, M.E. (2009a). Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Mol Cell Neurosci 40, 401-409.
Brosamle, C., and Halpern, M.E. (2009b). Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Mol Cell Neurosci 40, 401-409.
Bushati, N., and Cohen, S.M. (2007). microRNA functions. Annu Rev Cell Dev Biol 23, 175-205.
Cai, X.Z., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966.
Carlson, C.B., Bernstein, D.A., Annis, D.S., Misenheimer, T.M., Hannah, B.L., Mosher, D.F., and Keck, J.L. (2005). Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 12, 910-914.
Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q.L., Callis, T.E., Hammond, S.M., Conlon, F.L., and Wang, D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38, 228-233.
Chen, Y.C., Wu, B.K., Chu, C.Y., Cheng, C.H., Han, H.W., Chen, G.D., Lee, M.T., Hwang, P.P., Kawakami, K., Chang, C.C., et al. (2010). Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos. Nucleic Acids Res 38, 4635-4650.
Chen, Y.H., Lee, H.C., Liu, C.F., Lin, C.Y., and Tsai, H.J. (2003). Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5. Dev Dyn 228, 41-50.
Chen, Y.H., Wang, Y.H., Chang, M.Y., Lin, C.Y., Weng, C.W., Westerfield, M., and Tsai, H.J. (2007). Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev Biol 7, 1.
Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744.
Christ, B., Huang, R., and Scaal, M. (2007). Amniote somite derivatives. Dev Dyn 236, 2382-2396.
Dale, J.K., Maroto, M., Dequeant, M.L., Malapert, P., McGrew, M., and Pourquie, O. (2003). Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 421, 275-278.
Diekmann, H., Klinger, M., Oertle, T., Heinz, D., Pogoda, H.M., Schwab, M.E., and Stuermer, C.A. (2005). Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo-A in fish. Mol Biol Evol 22, 1635-1648.
Ferjentsik, Z., Hayashi, S., Dale, J.K., Bessho, Y., Herreman, A., De Strooper, B., del Monte, G., de la Pompa, J.L., and Maroto, M. (2009). Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet 5, e1000662.
Fournier, A.E., GrandPre, T., and Strittmatter, S.M. (2001). Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341-346.
Gagan, J., Dey, B.K., Layer, R., Yan, Z., and Dutta, A. (2012). Notch3 and Mef2c Proteins Are Mutually Antagonistic via Mkp1 Protein and miR-1/206 MicroRNAs in Differentiating Myoblasts. J Biol Chem 287, 40360-40370.
Gibb, S., Zagorska, A., Melton, K., Tenin, G., Vacca, I., Trainor, P., Maroto, M., and Dale, J.K. (2009). Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev Biol 330, 21-31.
Girós, A., Grgur, K., Gossler, A., and Costell, M. (2011). α5β1 integrin-mediated adhesion to fibronectin is required for axis elongation and somitogenesis in mice. PloS one 6.
Goljanek-Whysall, K., Sweetman, D., Abu-Elmagd, M., Chapnik, E., Dalmay, T., Hornstein, E., and Munsterberg, A. (2011). MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. PNAS 108, 11936-11941.
GrandPre, T., Li, S., and Strittmatter, S.M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547-551.
GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444.
Ha, M., and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 509-524.
Haas, J.D., Nistala, K., Petermann, F., Saran, N., Chennupati, V., Schmitz, S., Korn, T., Wedderburn, L.R., Forster, R., Krueger, A., et al. (2011). Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in alpha beta and gamma delta T Cells. PloS one 6.
Haase, A.D., Jaskiewicz, L., Zhang, H., Laine, S., Sack, R., Gatignol, A., and Filipowicz, W. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO reports 6, 961-967.
Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R., and Hannon, G.J. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146-1150.
Han, J.J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-3027.
Haond, C., Farace, F., Guillier, M., Lecluse, Y., Mecaj, L., Mazurier, F., Vainchenker, W., and Turhan, A.G. (2004). Comparative single cell analysis of side population (SP)/CD45+ cells from marrow and skeletal muscle reveals evidence of genuine stem cell function and multilineage differentiation ability in muscle-resident stem cells. Blood 104, 734a-734a.
Herrgen, L., Ares, S., Morelli, L.G., Schroter, C., Julicher, F., and Oates, A.C. (2010). Intercellular coupling regulates the period of the segmentation clock. Curr Biol 20, 1244-1253.
Imbesi, R., D'Agata, V., Musumeci, G., and Castrogiovanni, P. (2014). Skeletal muscle: from development to function. Clin Ter 165, 47-56.
Isenberg, J.S., Jia, Y., Fukuyama, J., Switzer, C.H., Wink, D.A., and Roberts, D.D. (2007). Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem 282, 15404-15415.
Isenberg, J.S., Ridnour, L.A., Perruccio, E.M., Espey, M.G., Wink, D.A., and Roberts, D.D. (2005). Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci U S A 102, 13141-13146.
Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., and Tomari, Y. (2010). Hsc70/Hsp90 Chaperone Machinery Mediates ATP-Dependent RISC Loading of Small RNA Duplexes. Mol Cell 39, 292-299.
Jülich, D., Mould, A.P., Koper, E., and Holley, S.A. (2009). Control of extracellular matrix assembly along tissue boundaries via integrin and Eph/Ephrin signaling. Development 136, 2913-2921.
Jokic, N., Gonzalez de Aguilar, J.L., Dimou, L., Lin, S., Fergani, A., Ruegg, M.A., Schwab, M.E., Dupuis, L., and Loeffler, J.P. (2006). The neurite outgrowth inhibitor Nogo-A promotes denervation in an amyotrophic lateral sclerosis model. EMBO reports 7, 1162-1167.
Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428.
Kawasaki, H., and Taira, K. (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf), 211-212.
Kawasaki, K., Smith, R.S., Jr., Hsieh, C.M., Sun, J., Chao, J., and Liao, J.K. (2003). Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Molecular and cellular biology 23, 5726-5737.
Kim, H.K., Lee, Y.S., Sivaprasad, U., Malhotra, A., and Dutta, A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174, 677-687.
Kim, J.E., Bonilla, I.E., Qiu, D., and Strittmatter, S.M. (2003). Nogo-C is sufficient to delay nerve regeneration. Mol Cell Neurosci 23, 451-459.
Kiseleva, E., Morozova, K.N., Voeltz, G.K., Allen, T.D., and Goldberg, M.W. (2007). Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. J Struct Biol 160, 224-235.
Koshida, S., Kishimoto, Y., Ustumi, H., Shimizu, T., Furutani-Seiki, M., Kondoh, H., and Takada, S. (2005). Integrinα5-Dependent Fibronectin Accumulation for Maintenance of Somite Boundaries in Zebrafish Embryos. Developmental Cell 8, 587-598.
Kragtorp, K.A., and Miller, J.R. (2006). Regulation of somitogenesis by Ena/VASP proteins and FAK during Xenopus development. Development 133, 685-695.
Krol, A.J., Roellig, D., Dequeant, M.L., Tassy, O., Glynn, E., Hattem, G., Mushegian, A., Oates, A.C., and Pourquie, O. (2011). Evolutionary plasticity of segmentation clock networks. Development 138, 2783-2792.
Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and its D-melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167.
Lee, Y., Ahn, C., Han, J.J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670.
Leung, A.K., and Sharp, P.A. (2010). MicroRNA functions in stress responses. Mol Cell 40, 205-215.
Limana, F., Esposito, G., D'Arcangelo, D., Di Carlo, A., Romani, S., Melillo, G., Mangoni, A., Bertolami, C., Pompilio, G., Germani, A., et al. (2011). HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PloS one 6, e19845.
Lin, C.Y., Lee, H.C., Fu, C.Y., Ding, Y.Y., Chen, J.S., Lee, M.H., Huang, W.J., and Tsai, H.J. (2013). MiR-1 and miR-206 target different genes to have opposing roles during angiogenesis in zebrafish embryos. Nat Commun 4, 2829.
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98.
Lymn, J.S., Patel, M.K., Clunn, G.F., Rao, S.J., Gallagher, K.L., and Hughes, A.D. (2002). Thrombospondin-1 differentially induces chemotaxis and DNA synthesis of human venous smooth muscle cells at the receptor-binding level. Journal of cell science 115, 4353-4360.
Macquarrie, K.L., Yao, Z., Young, J.M., Cao, Y., and Tapscott, S.J. (2012). miR-206 integrates multiple components of differentiation pathways to control the transition from growth to differentiation in rhabdomyosarcoma cells. Skelet Muscle 2, 7.
McCarthy, J.J. (2011). The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 39, 150-154.
Meng, X.N., Jin, Y., Yu, Y., Bai, J., Liu, G.Y., Zhu, J., Zhao, Y.Z., Wang, Z., Chen, F., Lee, K.Y., et al. (2009). Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer 101, 327-334.
Morris, K.V., Chan, S.W., Jacobsen, S.E., and Looney, D.J. (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289-1292.
Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16, 720-728.
Musumeci, G., Castrogiovanni, P., Coleman, R., Szychlinska, M.A., Salvatorelli, L., Parenti, R., Magro, G., and Imbesi, R. (2015). Somitogenesis: From somite to skeletal muscle. Acta histochemica.
Nakasa, T., Ishikawa, M., Shi, M., Shibuya, H., Adachi, N., and Ochi, M. (2010). Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med 14, 2495-2505.
Nakaya, Y., Kuroda, S., Katagiri, Y.T., Kaibuchi, K., and Takahashi, Y. (2004). Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev Cell 7, 425-438.
Nikaido, M., Kawakami, A., Sawada, A., Furutani-Seiki, M., Takeda, H., and Araki, K. (2002). Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nat Genet 31, 195-199.
Ning, Z., Wang, A., Liang, J., Xie, Y., Liu, J., Yan, Q., and Wang, Z. (2014). USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells. Oncology reports 32, 1451-1458.
O'Rourke, J.R., Georges, S.A., Seay, H.R., Tapscott, S.J., McManus, M.T., Goldhamer, D.J., Swanson, M.S., and Harfe, B.D. (2007). Essential role for Dicer during skeletal muscle development. Dev Biol 311, 359-368.
O'Sullivan, N.C., Jahn, T.R., Reid, E., and O'Kane, C.J. (2012). Reticulon-like-1, the Drosophila orthologue of the hereditary spastic paraplegia gene reticulon 2, is required for organization of endoplasmic reticulum and of distal motor axons. Hum Mol Genet 21, 3356-3365.
Oertle, T., Huber, C., van der Putten, H., and Schwab, M.E. (2003a). Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J Mol Biol 325, 299-323.
Oertle, T., van der Haar, M.E., Bandtlow, C.E., Robeva, A., Burfeind, P., Buss, A., Huber, A.B., Simonen, M., Schnell, L., Brosamle, C., et al. (2003b). Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 23, 5393-5406.
Ozbudak, E.M., and Lewis, J. (2008). Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 4, e15.
Palmeirim, I., Henrique, D., Ish-Horowicz, D., and Pourquie, O. (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639-648.
Patel, M.K., Lymn, J.S., Clunn, G.F., and Hughes, A.D. (1997). Thrombospondin-1 is a potent mitogen and chemoattractant for human vascular smooth muscle cells. Arteriosclerosis, thrombosis, and vascular biology 17, 2107-2114.
Pinzon-Olejua, A., Welte, C., Abdesselem, H., Malaga-Trillo, E., and Stuermer, C.A.O. (2014). Essential roles of zebrafish rtn4/Nogo paralogues in embryonic development. Neural Development 9.
Pourquie, O. (2011). Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650-663.
Prinjha, R., Moore, S.E., Vinson, M., Blake, S., Morrow, R., Christie, G., Michalovich, D., Simmons, D.L., and Walsh, F.S. (2000). Inhibitor of neurite outgrowth in humans. Nature 403, 383-384.
Qabar, A., Derick, L., Lawler, J., and Dixit, V. (1995). Thrombospondin-3 Is a Pentameric Molecule Held Together by Interchain Disulfide Linkage Involving 2 Cysteine Residues. J Biol Chem 270, 12725-12729.
Rodriguez-Feo, J.A., Hellings, W.E., Verhoeven, B.A., Moll, F.L., de Kleijn, D.P., Prendergast, J., Gao, Y., van der Graaf, Y., Tellides, G., Sessa, W.C., et al. (2007). Low levels of Nogo-B in human carotid atherosclerotic plaques are associated with an atheromatous phenotype, restenosis, and stenosis severity. Arteriosclerosis, thrombosis, and vascular biology 27, 1354-1360.
Rosenberg, M.I., Georges, S.A., Asawachaicharn, A., Analau, E., and Tapscott, S.J. (2006). MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175, 77-85.
Saga, Y. (2007). Segmental border is defined by the key transcription factor Mesp2, by means of the suppression of Notch activity. Dev Dyn 236, 1450-1455.
Sato, M.M., Nashimoto, M., Katagiri, T., Yawaka, Y., and Tamura, M. (2009). Bone morphogenetic protein-2 down-regulates miR-206 expression by blocking its maturation process. Biochem Biophys Res Commun 383, 125-129.
Schwab, M.E. (2010). Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 11, 799-811.
Shypitsyna, A., Malaga-Trillo, E., Reuter, A., and Stuermer, C.A. (2011). Origin of Nogo-A by domain shuffling in an early jawed vertebrate. Mol Biol Evol 28, 1363-1370.
Sieg, D.J., Hauck, C.R., and Schlaepfer, D.D. (1999). Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of cell science 112 ( Pt 16), 2677-2691.
Stenina-Adognravi, O. (2013). Thrombospondins: old players, new games. Current Opinion in Lipidology 24, 401-409.
Stenina, O.I., Topol, E.J., and Plow, E.F. (2007). Thrombospondins, their polymorphisms, and cardiovascular disease. Arteriosclerosis, thrombosis, and vascular biology 27, 1886-1894.
Sweetman, D., Goljanek, K., Rathjen, T., Oustanina, S., Braun, T., Dalmay, T., and Munsterberg, A. (2008). Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev Biol 321, 491-499.
Takahashi, J., Ohbayashi, A., Oginuma, M., Saito, D., Mochizuki, A., Saga, Y., and Takada, S. (2010). Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev Biol 342, 134-145.
Takahashi, Y., and Sato, Y. (2008). Somitogenesis as a model to study the formation of morphological boundaries and cell epithelialization. Dev Growth Differ 50 Suppl 1, S149-155.
Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69.
Townley-Tilson, W.H., Callis, T.E., and Wang, D. (2010). MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 42, 1252-1255.
van Eeden, F.J., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., et al. (1996). Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153-164.
Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M., and Rapoport, T.A. (2006). A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573-586.
Watanabe, T., Sato, Y., Saito, D., Tadokoro, R., and Takahashi, Y. (2009). EphrinB2 coordinates the formation of a morphological boundary and cell epithelialization during somite segmentation. Proc Natl Acad Sci U S A 106, 7467-7472.
Winbanks, C.E., Wang, B., Beyer, C., Koh, P., White, L., Kantharidis, P., and Gregorevic, P. (2011). TGF-beta Regulates miR-206 and miR-29 to Control Myogenic Differentiation through Regulation of HDAC4. J Biol Chem 286, 13805-13814.
Windner, S.E., Doris, R.A., Ferguson, C.M., Nelson, A.C., Valentin, G., Tan, H., Oates, A.C., Wardle, F.C., and Devoto, S.H. (2015). Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish. Development 142, 1159-1168.
Xiao, W., Zhou, S., Xu, H., Li, H., He, G., Liu, Y., and Qi, Y. (2013). Nogo-B promotes the epithelial-mesenchymal transition in HeLa cervical cancer cells via Fibulin-5. Oncology reports 29, 109-116.
Yabkowitz, R., Mansfield, P.J., Ryan, U.S., and Suchard, S.J. (1993). Thrombospondin mediates migration and potentiates platelet-derived growth factor-dependent migration of calf pulmonary artery smooth muscle cells. J Cell Physiol 157, 24-32.
Yan, R., Shi, Q., Hu, X., and Zhou, X. (2006). Reticulon proteins: emerging players in neurodegenerative diseases. Cell Mol Life Sci 63, 877-889.
Yang, Y.S., Harel, N.Y., and Strittmatter, S.M. (2009). Reticulon-4A (Nogo-A) redistributes protein disulfide isomerase to protect mice from SOD1-dependent amyotrophic lateral sclerosis. J Neurosci 29, 13850-13859.
Yang, Y.S., and Strittmatter, S.M. (2007). The reticulons: a family of proteins with diverse functions. Genome Biol 8, 234.
Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016.
Yusuf, F., and Brand-Saberi, B. (2006). The eventful somite: patterning, fate determination and cell division in the somite. Anatomy and embryology 211 Suppl 1, 21-30.
Zhang, T., Liu, M., Wang, C., Lin, C., Sun, Y., and Jin, D. (2011). Down-regulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res 31, 3859-3863.
Zhao, B., Chun, C., Liu, Z., Horswill, M.A., Pramanik, K., Wilkinson, G.A., Ramchandran, R., and Miao, R.Q. (2010a). Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood 116, 5423-5433.
Zhao, B.F., Chun, C.Z., Liu, Z., Horswill, M.A., Pramanik, K., Wilkinson, G.A., Ramchandran, R., and Miao, R.Q. (2010b). Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood 116, 5423-5433.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19222-
dc.description.abstractMicroRNA (miRNAs) 為小片段的非轉譯功能的單股RNA,其種子序列 (seed sequence)和目標基因RNA之3’端非轉譯區 (3’-untranslated region, 3’UTR) 互補而抑制目標基因轉錄後層次 (post-transcriptional level) 的表現。MicroRNA-206 (miR-206) 為骨骼肌專一表現之microRNA,可調控肌肉纖維母細胞的增生與分化。藉由 Labeled miRNA pull-down assay (LAMP) ,在斑馬魚胚胎發育早期之16 hpf,篩選出miR-206的標的基因之一為 reticulon4a (rtn4a)。進一步探討miR-206 抑制 rtn4a此一路徑在斑馬魚肌肉發育上的功能,發現當抑制miR-206或者過量表現rtn4a後,發現斑馬魚在48 hpf時,其斑馬魚體節邊界 (somite boundary) 產生缺失,且在缺失區域會有 F-actin 橫跨體節的現象。顯示miR-206抑制rtn4a的路徑影響斑馬魚的體節發育,我們首先利用microarray分析在抑制 miR-206 或過量表現 rtn4a 斑馬魚胚胎中體節細胞的基因表現量,得到在抑制 miR-206 或過量表現 rtn4a mRNA 下,相對於野生種斑馬魚胚胎表現量顯著上升的基因與顯著下降的基因。透過比對,找出抑制 miR-206或過量表現 rtn4a 細胞中,表現量改變趨勢相同的基因,其可能是參與miR-206 抑制 rtn4a此路徑下游的候選基因。利用全胚胎原位雜交染色實驗,從候選基因中篩選出表現量皆下降的 cxcr4a 與表現量皆上升的 thbs3a 基因進行研究。結果發現當抑制 cxcr4a 或過量表現 thbs3a 的體節發育早期 (20 hpf) 的胚胎體節邊界有缺失,而在體節發育成熟時 (48 hpf) 體節邊界的缺失仍存在且 F-actin 會橫跨體節。並發現在調控位階上,cxcr4a為 thbs3a上游基因,在rescue 實驗中,抑制 thbs3a 也能降低胚胎體節邊界缺失的比例。上述結果顯示,miR-206 透過抑制 rtn4a 的表現來影響 cxcr4a 或 thbs3a 藉此調控斑馬魚胚胎體節邊界的正常生成。此外,利用偵測γ-tubulin 或 pFAK 的免疫螢光染色發現在早期胚胎發育的體節邊界缺失的區域中心粒排列異常與 pFAK 訊號的消失,顯示在邊界細胞並未特化成表皮細胞。因此,顯示miR-206抑制 rtn4a 此一路徑透過 cxcr4a 及其下游 thbs3a 參與邊界細胞表皮化的過程。zh_TW
dc.description.abstractMicroRNAs (miRNAs) are short, endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting the 3’-untranslated region (3’UTR) of mRNAs through a seed sequence. miR-206 is a muscle-specific microRNA and is highly expressed in skeletal muscle. It is able to regulate the differentiation and proliferation in myoblast. That reticulon4a (rtn4a) is one of miR-206 target genes is proved by Labeled miRNA pull-down assay (LAMP) which preformed in 16-hpf zebrafish embryos. Further studying shows that miR-206 knockdown or rtn4a overexpression leads to somite boundary defect where F-actin across somites within 48-hpf zebrafish embryos. It implys that miR-206 plays roles on somite boundary development through silencing rtn4a. To address this issue, we anlazyed the gene expression profile of somite cells of miR-206-knockdown or rtn4a-overexpression embryo by microarray. Compared that with gene expression profile of wild type, we found the candidate genes which may be downstream of miR-206-rtn4a pathway. After microarray analysis, we selected 4 candidate genes which were all up-regulated and 4 candidate genes which were all down-regulated in miR-206-knockdown or rtn4a-overexpression embryo for further study. Using whole-mount in situ hybridization, we further selected two candidate genes ,cxcr4a which is down-regulated and thbs3a which is down-regulated, by its expression patterns and level. Then, we observerd that somite bounday defect within cxcr4a-knockdown or thbs3a-overexrpresion zebrafish embryos. Furthermore, it was proved that cxcr4a was able to repress thbs3a mRNA expression. As mentioned above, rtn4a was silenced by miR-206 inhibated cxcr4a, which repressed thbs3a mRNA expression. In addition, we demonstrated that somite boundary defect as mentioned might result from somite boundary cells wasn’t able to differentiate to epithelium by detecting the arrangement of γ-tubulin or expression of pFAK around the defect area. Evidence thus far accumulated shows that rtn4a was silenced by miR-206 inhibiate cxcr4a and leads to repress thbs3a to regulated the epithelialization of somite boundary cells during the somite development of zebrafish embryo.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:49:27Z (GMT). No. of bitstreams: 1
ntu-105-R01b43020-1.pdf: 5213497 bytes, checksum: 09675e93bd71ad7f303f08a014f9bd6f (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 1
英文摘要 2
文獻回顧 3
前言 17
材料與方法 19
結果 27
討論 33
參考文獻 38
圖說 50
附錄一、Developmental stages in the zebrafish 59
附錄二、miR-206 knockdown 與 rtn4a 過量表現顯著上升的交集基因 63
附錄三、miR-206 knockdown 與 rtn4a 過量表現顯著下降的交集基因 64
dc.language.isozh-TW
dc.titleMicroRNA-206抑制 rtn4a的表現而調節下游基因以維持體節邊界正常的發育zh_TW
dc.titleMicroRNA-206 Plays Roles on Somite Boundary Development through Silencing rtn4a and Its Downstream Genesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee管永恕(Yung-Shu Kuan),陳曜鴻(Yau-Hung Chen)
dc.subject.keyword斑馬魚,體節,rtn4a,miR-206,zh_TW
dc.subject.keywordsomite,rtn4a,miR-206,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201601580
dc.rights.note未授權
dc.date.accepted2016-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved