Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅
dc.contributor.authorHong-Wen Luoen
dc.contributor.author羅鴻汶zh_TW
dc.date.accessioned2021-06-08T01:47:54Z-
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citation[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, etal., 'Electric field effect in atomically thin carbon films,' Science, vol. 306, pp. 666-669,Oct 22 2004.
[2] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, et al.,'Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates,' IeeeElectron Device Letters, vol. 30, pp. 650-652, Jun 2009.
[3] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim,'A roadmap for graphene,' Nature, vol. 490, pp. 192-200, Oct 11 2012.
[4] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., 'Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,' Science, vol.324, pp. 1312-1314, Jun 5 2009.
[5] W. H. Lin, T. H. Chen, J. K. Chang, J. I. Taur, Y. Y. Lo, W. L. Lee, et al., 'A Directand Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate,' Acs Nano, vol. 8, pp. 1784-1791, Feb 2014.
[6] T. Mueller, F. Xia, and P. Avouris, 'Graphene photodetectors for high-speed optical communications,' Nature Photonics, vol. 4, pp. 297-301, 2010.
[7] F. N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, et al.,'Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,' NanoLetters, vol. 9, pp. 1039-1044, Mar 2009.
[8] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, 'Ultrafast graphenephotodetector,' Nat Nanotechnol, vol. 4, pp. 839-43, Dec 2009.
[9] A. K. Geim, 'Graphene: Status and Prospects,' Science, vol. 324, pp. 1530-1534,Jun 19 2009.
[10] A. K. Geim and K. S. Novoselov, 'The rise of graphene,' Nature Materials, vol. 6,pp. 183-191, Mar 2007.
[11] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, 'The electronic properties of graphene,' Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
[12] J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, et al., 'Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,' Acs Nano, vol. 5, pp. 6916-6924, Sep 2011.
[13] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, 'Grapheneannealing: how clean can it be?,' Nano Lett, vol. 12, pp. 414-9, Jan 11 2012.
[14] U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, et al., '25thAnniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene forOptimized Nanostructures & Nanodevices,' Advanced Materials, vol. 26, pp. 40-67, Jan2014.
[15] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, 'The application ofgraphene as electrodes in electrical and optical devices,' Nanotechnology, vol. 23, Mar23 2012.
[16] Y. M. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, 'Work FunctionEngineering of Graphene Electrode via Chemical Doping,' Acs Nano, vol. 4, pp. 2689-2694, May 2010.
[17] H. Pinto, R. Jones, J. P. Goss, and P. R. Briddon, 'p-type doping of graphene withF4-TCNQ,' J Phys Condens Matter, vol. 21, p. 402001, Oct 7 2009.
[18] S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong, and J. M. Nam, 'UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering,' Acs Nano, vol. 5, pp. 9799-9806, Dec 2011.
[19] Y. Ren, S. Chen, W. Cai, Y. Zhu, C. Zhu, and R. S. Ruoff, 'Controlling the electrical transport properties of graphene by in situ metal deposition,' Applied Physics Letters, vol. 97, p. 053107, 2010.
[20] E. J. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, 'Contact and edge effects in graphene devices,' Nat Nanotechnol, vol. 3, pp. 486-90, Aug 2008.
[21] G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, and P. Kelly, 'Doping Graphene with Metal Contacts,' Physical Review Letters, vol. 101, 2008.
[22] F. Schwierz, 'Graphene transistors,' Nat Nanotechnol, vol. 5, pp. 487-96, Jul 2010.
[23] M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, 'Energy band-gap engineering of graphene nanoribbons,' Physical Review Letters, vol. 98, May 18 2007.
[24] A. H. Zhang, Y. H. Wu, S. H. Ke, Y. P. Feng, and C. Zhang, 'Bandgap engineeringof zigzag graphene nanoribbons by manipulating edge states via defective boundaries,'Nanotechnology, vol. 22, Oct 28 2011.
[25] C. A. Xu, H. Li, and K. Banerjee, 'Modeling, Analysis, and Design of GrapheneNano-Ribbon Interconnects,' Ieee Transactions on Electron Devices, vol. 56, pp. 1567-1578, Aug 2009.
[26] X. G. Liang, Y. S. Jung, S. W. Wu, A. Ismach, D. L. Olynick, S. Cabrini, et al.,'Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography,' Nano Letters, vol. 10, pp. 2454-2460, Jul 2010.
[27] J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, 'Graphene nanomesh,'Nature Nanotechnology, vol. 5, pp. 190-194, Mar 2010.
[28] S. Lebegue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, 'Accurate electronic band gap of pure and functionalized graphane from GW calculations,' Physical Review B, vol. 79, Jun 2009.
[29] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, 'Graphane: A two-dimensionalhydrocarbon,' Physical Review B, vol. 75, Apr 2007.
[30] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, et al., 'Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane,' Science, vol. 323, pp. 610-613, Jan 30 2009.
[31] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, 'A self-consistent theory for graphene transport,' Proc Natl Acad Sci U S A, vol. 104, pp. 18392-7, Nov 20 2007.
[32] M. Trushin and J. Schliemann, 'Conductivity of graphene: How to distinguish between samples with short- and long-range scatterers,' EPL (Europhysics Letters), vol.83, p. 17001, 2008.
[33] J. W. Kłos and I. V. Zozoulenko, 'Effect of short- and long-range scattering on the conductivity of graphene: Boltzmann approach vs tight-binding calculations,' PhysicalReview B, vol. 82, 2010.
[34] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, 'Temperature-Dependent Transport in Suspended Graphene,' Physical Review Letters, vol. 101, 2008.
[35] T. Ando, 'Screening Effect and Impurity Scattering in Monolayer Graphene,'89 Journal of the Physical Society of Japan, vol. 75, p. 074716, 2006.
[36] C. Jang, S. Adam, J. H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer,'Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects ofDielectric Screening on Short- and Long-Range Potential Scattering,' Physical ReviewLetters, vol. 101, 2008.
[37] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al.,'Ultrahigh electron mobility in suspended graphene,' Solid State Communications, vol.146, pp. 351-355, 2008.
[38] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, 'Intrinsic and extrinsic performance limits of graphene devices on SiO2,' Nat Nanotechnol, vol. 3, pp. 206-9, Apr 2008.
[39] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, 'Atomicstructure of graphene on SiO2,' Nano Letters, vol. 7, pp. 1643-1648, Jun 2007.
[40] H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, et al., 'n-Type Behavior of Graphene Supported on Si/SiO2 Substrates,' Acs Nano, vol. 2, pp. 2037-2044, Oct 2008.
[41] S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, et al., 'Atmospheric oxygenbinding and hole doping in deformed graphene on a SiO(2) substrate,' Nano Lett, vol. 10, pp. 4944-51, Dec 8 2010.
[42] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, et al., 'Boronnitride substrates for high-quality graphene electronics,' Nat Nanotechnol, vol. 5, pp.722-6, Oct 2010.
[43] R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Z. Tsai, Q. Wu, et al., 'Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,' Nano Lett, vol. 11, pp. 2291-5, Jun 8 2011.
[44] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, et al., 'Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,' Nat Mater, vol. 10, pp. 282-5, Apr 2011.
[45] K. Shankar and T. N. Jackson, 'Morphology and electrical transport in pentacenefilms on silylated oxide surfaces,' Journal of Materials Research, vol. 19, pp. 2003-2007, 2011.
[46] S. Chattopadhyay, A. Uysal, B. Stripe, Y.-g. Ha, T. J. Marks, E. A. Karapetrova, etal., 'How Water Meets a Very Hydrophobic Surface,' Physical Review Letters, vol. 105, 2010.
[47] Y. L. Wang and M. Lieberman, 'Growth of ultrasmooth octadecyltrichlorosilane self-assembled monolayers on SiO2,' Langmuir, vol. 19, pp. 1159-1167, Feb 18 2003.
[48] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, et al., 'Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,' Nano Lett, vol. 10, pp. 1149-53, Apr 14 2010.
[49] M. E. Mcgovern, K. M. R. Kallury, and M. Thompson, 'Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,' Langmuir, vol. 10, pp. 3607-3614, Oct 1994.
[50] M. Mezger, H. Reichert, S. Schoder, J. Okasinski, H. Schroder, H. Dosch, et al., 'High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyltrichlorosilane interface,' Proc Natl Acad Sci U S A, vol. 103, pp. 18401-4, Dec 5 2006.
[51] S. C. Clear and P. F. Nealey, 'Lateral force microscopy study of the frictional behavior of self-assembled monolayers of octadecyltrichlorosilane on silicon/silicon dioxide immersed in n-alcohols,' Langmuir, vol. 17, pp. 720-732, Feb 6 2001.
[52] S. Hansel, M. Lafkioti, and V. Krstić, 'Suppression of short-range scattering via hydrophobic substrates and the fractional quantum Hall effect in graphene,' physica status solidi (RRL) - Rapid Research Letters, vol. 6, pp. 376-378, 2012.
[53]Low-Contact-Resistance Graphene Devices with Nickel-Etched-Graphene Contacts Wei Sun Leong, Hao Gong, and John T. L. Thong, 2014
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19183-
dc.description.abstract因現今積體電路設計不斷縮小化,微影技術將會面臨製程上的限制,在閘極長度縮小至七奈米下時,各種物理狀況如漏電流也越來越難加以控制,在這種傳統由上而下的縮小方式越來越難以發展的情形下,近來由於石墨烯具有相當高的載子遷移率,因此被視為下一代半導體電子元件的材料, 也就是所謂由下而上的建構方式,單層石墨烯因為其具有高穩定性、高載子遷移率,獨特的光學性質,對於未來取代目前以矽為主的半導體工業有著相當高的相容性。本研究先以化學氣相沉積法在銅箔上成長大面積的石墨烯,再將石墨烯轉印至二氧化矽基板上並利用電子束微影製作傳輸線模型以量測石墨烯與金屬的接觸電阻,透過紫外光光電子能譜與X光光電子能譜儀探討石墨烯與金屬的介面。為了更加降低石墨烯與金屬的接觸電阻,利用無高分子轉印石墨烯,不同於一般傳統的高分子輔助轉印法,無高分子轉印法沒有高分子聚合物的殘留,藉由分析元件電學性質的表現,像是接觸電阻與電子遷移率的比較,迪拉克點的位置以比較兩種轉印方法的優缺。而利用替代摻雜、表面摻雜等方式造成P-型及N型的石墨烯電晶體可調控的特性也陸續被使用,本論文中是利用表面摻雜的方式,藉由上下兩層金屬的電子轉移作用改善石墨烯與金屬的接觸電阻,並量測雙層金屬石墨烯結構的電晶體元其電性與一般傳統電晶體的比較。本研究最後成功的將化學氣相沉積法所成長出的石墨烯將其接觸電阻降低至單晶石墨烯的品質,未來有機會取代矽,成為半導體元件的主流材料。zh_TW
dc.description.abstractOwing to reports of graphene’s extremely high intrinsic mobility and unique structure. this thesis reviews the history on electronic property of graphene at the first, and it explains why graphene became the most popular material recently.Contact resistance is one of the important research topics among the diverse researches of graphene.
In seconed part of this thesis, we discuss the contact resistance on graphene and metal., we use electron beam lithograph to fabricate the TLM pattern for reach the single crystal carrier mobility,and discuss the date by XPS and UPS .Furthermore, we compare the polymer free method with PMMA transfer to lower the contact resistance. By this method, we can use polycrystalline graphene to reach higher mobility. Thus, the results will be much better than before.
Then a new double-contact geometry for graphene devices is fabricated and compared to top contacts
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:47:54Z (GMT). No. of bitstreams: 1
ntu-105-R02941098-1.pdf: 3696827 bytes, checksum: e32b71362a50d78f5cc32025f31a46f2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝i
摘要ii
ABSTRACTiii
CONTENTSiv
LIST OF FIGURESvii
LIST OF TABLESix
Chapter 1 緒論 1
1.1 石墨烯的簡介1
1.2 文獻回顧 2
1.2.1 石墨烯的電子結構 2
1.2.2 石墨烯的製備方法 4
1.2.3 石墨烯的摻雜 5
1.3 石墨烯金氧半場效電晶體 6
1.3.1 石墨烯場效電晶體的基本性質與結構 6
1.3.2 困境與未來應用 7
1.4 研究動機 8
Chapter 2 實驗理論與方法 9
2.1 實驗原理與理論 9
2.1.1 載子傳輸理論 9
2.1.2 特徵接觸阻抗 10
2.2 實驗方法 12
2.2.1 樣品準備 13
2.2.2 轉印 13
2.2.3 光阻旋塗 14
2.2.4 掃描式電子顯微鏡及電子束微影 14
2.2.5 氧電漿蝕刻機 15
2.2.6 熱蒸鍍機 17
2.2.7 X射線光電子頻譜 (XPS) 18
2.2.8 拉曼頻譜 19
Chapter 3 石墨烯與金屬接觸界面分析 20
3.1 傳輸線模型 20
3.1.1 傳輸線模型理論 20
3.1.2 以電子束微影製作傳輸線模型 22
3.2 石墨烯與金屬的接觸電阻 26
3.2.1 實驗數據 26
3.2.2 結果分析 29
Chapter 4 改善石墨烯/金屬接觸電阻之方法 36
4.1 無高分子轉印法 36
4.1.1 XPS及UPS分析 36
4.1.2 拉曼量測與光學顯微鏡 38
4.1.3 無高分子轉印法之石墨烯/金屬接觸電阻量測 40
4.1.4 電性量測 43
4.2 改善石墨烯與金屬接觸電阻 45
4.2.1 金屬-石墨烯-金屬之雙層結構 45
4.2.2 實驗流程 46
4.2.3 結果討論 50
Chapter 5 結論 53
5.1 總結 53
5.2 未來展望 54
參考文獻 55
dc.language.isozh-TW
dc.title以無高分子轉印方法及雙層電極改良石墨烯與不同金屬之接觸電阻zh_TW
dc.titleOptimizing contact resistance between graphene and different metal via double layer electrode and polymer-free transfer methoden
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君,吳育任,吳肇欣,陳美杏
dc.subject.keyword石墨烯,接觸電阻,電子束微影,傳輸線模型,無高分子轉印法,zh_TW
dc.subject.keywordgraphene,contact resistance,electron beam lithography,polymer-free,transmission line model,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201601016
dc.rights.note未授權
dc.date.accepted2016-08-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved