Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康敦彥(Dun-Yen Kang)
dc.contributor.authorYang Loen
dc.contributor.author羅揚zh_TW
dc.date.accessioned2021-06-08T01:46:58Z-
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation1. L. M. Robeson, The upper bound revisited. J. Membr. Sci., 320, 390-400 (2008).
2. K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt and K. Kleinermanns, Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation. Membranes, 2, 727-763 (2012).
3. X. Liu, Y. Li, Y. Ban, Y. Peng, H. Jin, H. Bux, L. Xu, J. Caro and W. Yang, Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem. Commun., 49, 9140-9142 (2013).
4. R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun., 49, 9500-9502 (2013).
5. H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke and J. Caro, Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc., 131, 16000-16001 (2009).
6. H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.-S. Li and J. Caro, Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H-2/C3H8 Molecular Sieve Separation. Chem. Mater., 23, 2262-2269 (2011).
7. H. T. Kwon and H.-K. Jeong, In Situ Synthesis of Thin Zeolitic-Imidazolate Framework ZIF-8 Membranes Exhibiting Exceptionally High Propylene/Propane Separation. J. Am. Chem. Soc., 135, 10763-10768 (2013).
8. P. Bernardo, E. Drioli and G. Golemme, Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res., 48, 4638-4663 (2009).
9. F. Gallucci, E. Fernandez, P. Corengia and M. V. Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci., 92, 40-66 (2013).
10. Y. Zhang, J. Sunarso, S. M. Liu and R. Wang, Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenhouse Gas Control, 12, 84-107 (2013).
11. N. Y. Du, H. B. Park, M. M. Dal-Cin and M. D. Guiver, Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ. Sci., 5, 7306-7322 (2012).
12. D. E. Sanders, Z. P. Smith, R. L. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul and B. D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54, 4729-4761 (2013).
13. Z. P. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis and D. G. Vlachos, Microstructural optimization of a zeolite membrane for organic vapor separation. Science, 300, 456-460 (2003).
14. M. W. Deem, R. Pophale, P. A. Cheeseman and D. J. Earl, Computational Discovery of New Zeolite-Like Materials. J. Phys. Chem. C, 113, 21353-21360 (2009).
15. S. J. Yang, M. Lach-hab, Vaisman, II, E. Blaisten-Barojas, X. A. Li and V. L. Karen, Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database. J. Phys. Chem. Ref. Data, 39, 45 (2010).
16. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal-organic framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459 (2009).
17. D. Farrusseng, S. Aguado and C. Pinel, Metal-Organic Frameworks: Opportunities for Catalysis. Angew. Chem., Int. Ed., 48, 7502-7513 (2009).
18. J. W. Liu, L. F. Chen, H. Cui, J. Y. Zhang, L. Zhang and C. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43, 6011-6061 (2014).
19. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319, 939-943 (2008).
20. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe and O. M. Yaghi, Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res., 43, 58-67 (2010).
21. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev., 112, 724-781 (2012).
22. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt and J. Pastre, Metal-organic frameworks - prospective industrial applications. J. Mater. Chem., 16, 626-636 (2006).
23. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev., 38, 1477-1504 (2009).
24. M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee and H. K. Jeong, Current Status of Metal-Organic Framework Membranes for Gas Separations: Promises and Challenges. Ind. Eng. Chem. Res., 51, 2179-2199 (2012).
25. W. C. Lee, H. T. Chien, Y. Lo, H. C. Chiu, T. P. Wang and D. Y. Kang, Synthesis of Zeolitic Imidazolate Framework Core-Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs. ACS Appl. Mater. Interfaces, 7, 18353-18361 (2015).
26. Y. Q. Tian, C. X. Cai, Y. Ji, X. Z. You, S. M. Peng and G. H. Lee, Co-5(im)(10) center dot 2MB (x): A metal-organic open-framework with zeolite-like topology. Angew. Chem., Int. Ed., 41, 1384-1386 (2002).
27. D. W. Lewis, A. R. Ruiz-Salvador, A. Gomez, L. M. Rodriguez-Albelo, F. X. Coudert, B. Slater, A. K. Cheetham and C. Mellot-Draznieks, Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm, 11, 2272-2276 (2009).
28. B. R. Pimentel, A. Parulkar, E. K. Zhou, N. A. Brunelli and R. P. Lively, Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations. ChemSusChem, 7, 3202-3240 (2014).
29. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A., 103, 10186-10191 (2006).
30. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev., 112, 1105-1125 (2012).
31. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E. Morris and C. Serre, Metal-Organic Frameworks in Biomedicine. Chem. Rev., 112, 1232-1268 (2012).
32. J. Yao and H. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem. Soc. Rev., 43, 4470-4493 (2014).
33. Y. Pan, Y. Liu, G. Zeng, L. Zhao and Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun., 47, 2071-2073 (2011).
34. M. Jian, B. Liu, R. Liu, J. Qu, H. Wang and X. Zhang, Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv., 5, 48433-48441 (2015).
35. Y. Pan and Z. Lai, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun., 47, 10275-10277 (2011).
36. Y. Pan, B. Wang and Z. Lai, Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. J. Membr. Sci., 421, 292-298 (2012).
37. K. Huang, Z. Dong, Q. Li and W. Jin, Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Chem. Commun., 49, 10326-10328 (2013).
38. H. F. Zhang, D. F. Liu, Y. Yao, B. Q. Zhang and Y. S. Lin, Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci., 485, 103-111 (2015).
39. C. Y. Zhang, C. Han, D. S. Sholl and J. R. Schmidt, Computational Characterization of Defects in Metal-Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8. J. Phys. Chem. Lett., 7, 459-464 (2016).
40. Q. Shi, Z. Chen, Z. Song, J. Li and J. Dong, Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angew. Chem., Int. Ed., 50, 672-675 (2011).
41. Z. X. Zhong, J. F. Yao, R. Z. Chen, Z. Low, M. He, J. Z. Liu and H. T. Wang, Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. J. Mater. Chem. A, 3, 15715-15722 (2015).
42. A. D. Katsenis, A. Puskaric, V. Strukil, C. Mottillo, P. A. Julien, K. Uzarevic, M. H. Pham, T. O. Do, S. A. J. Kimber, P. Lazic, O. Magdysyuk, R. E. Dinnebier, I. Halasz and T. Friscic, In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun., 6, 8 (2015).
43. M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett and H.-K. Jeong, Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures. Langmuir, 26, 14636-14641 (2010).
44. S. R. Venna and M. A. Carreon, Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation. J. Am. Chem. Soc., 132, 76-78 (2010).
45. Y. Pan, T. Li, G. Lestari and Z. Lai, Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci., 390, 93-98 (2012).
46. Y. Zhu, Q. Liu, J. Caro and A. Huang, Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis. Sep. Purif. Technol., 146, 68-74 (2015).
47. K. Kida, K. Fujita, T. Shimada, S. Tanaka and Y. Miyake, Layer-by-layer aqueous rapid synthesis of ZIF-8 films on a reactive surface. Dalton Trans., 42, 11128-11135 (2013).
48. S. Tanaka, T. Shimada, K. Fujita, Y. Miyake, K. Kida, K. Yogo, J. M. Denayer, M. Sugita and T. Takewaki, Seeding-free aqueous synthesis of zeolitic imidazolate framework-8 membranes: How to trigger preferential heterogeneous nucleation and membrane growth in aqueous rapid reaction solution. J. Membr. Sci., 472, 29-38 (2014).
49. X. Zhang, Y. Liu, L. Kong, H. Liu, J. Qiu, W. Han, L.-T. Weng, K. L. Yeung and W. Zhu, A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J. Mater. Chem. A, 1, 10635-10638 (2013).
50. Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu and Y. M. Lee, Metal-organic framework membranes fabricated via reactive seeding. Chem. Commun., 47, 737-739 (2011).
51. Y. Liu, N. Wang, J. H. Pan, F. Steinbach and J. Caro, In Situ Synthesis of MOF Membranes on ZnAl-CO3 LDH Buffer Layer-Modified Substrates. J. Am. Chem. Soc., 136, 14353-14356 (2014).
52. H. T. Kwon, H. K. Jeong, A. S. Lee, H. S. An and J. S. Lee, Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances. J. Am. Chem. Soc., 137, 12304-12311 (2015).
53. J. Yao, D. Dong, D. Li, L. He, G. Xu and H. Wang, Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun., 47, 2559-2561 (2011).
54. A. J. Brown, N. A. Brunelli, K. Eum, F. Rashidi, J. R. Johnson, W. J. Koros, C. W. Jones and S. Nair, Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 345, 72-75 (2014).
55. S. J. Noh, S. P. Yoon, J. Han, S. Park and J. Kim, Synthesis and Characterization of ZIF-7 Membranes by In Situ Method. J. Nanosci. Nanotechnol., 15, 575-578 (2015).
56. E. Shamsaei, Z. X. Low, X. C. Lin, A. Mayahi, H. Y. Liu, X. W. Zhang, J. Z. Liu and H. T. Wang, Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chem. Commun., 51, 11474-11477 (2015).
57. M. He, J. Yao, Q. Liu, K. Wang, F. Chen and H. Wang, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater., 184, 55-60 (2014).
58. T. Singh, D. Y. Kang and S. Nair, Rigorous calculations of permeation in mixed-matrix membranes: Evaluation of interfacial equilibrium effects and permeability-based models. J. Membr. Sci., 448, 160-169 (2013).
59. T. P. Wang and D. Y. Kang, Predictions of effective diffusivity of mixed matrix membranes with tubular fillers. J. Membr. Sci., 485, 123-131 (2015).
60. A.-C. Yang, C.-H. Liu and D.-Y. Kang, Estimations of effective diffusivity of hollow fiber mixed matrix membranes. J. Membr. Sci., 495, 269-275 (2015).
61. C. Zhang, R. P. Lively, K. Zhang, J. R. Johnson, O. Karvan and W. J. Koros, Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. J. Phys. Chem. Lett., 3, 2130-2134 (2012).
62. Z.-X. Low, J. Yao, Q. Liu, M. He, Z. Wang, A. K. Suresh, J. Bellare and H. Wang, Crystal Transformation in Zeolitic-Imidazolate Framework. Cryst. Growth Des., 14, 6589-6598 (2014).
63. A. C. Yang, T. Y. Wang, C. A. Dai and D. Y. Kang, Incorporation of single-walled aluminosilicate nanotubes for the control of crystal size and porosity of zeolitic imidazolate framework-L. CrystEngComm, 18, 881-887 (2016).
64. B. Chen, F. Bai, Y. Zhu and Y. Xia, A cost-effective method for the synthesis of zeolitic imidazolate framework-8 materials from stoichiometric precursors via aqueous ammonia modulation at room temperature. Microporous Mesoporous Mater., 193, 7-14 (2014).
65. B. L. Chen, F. H. Bai, Y. Q. Zhu and Y. D. Xia, Hofmeister anion effect on the formation of ZIF-8 with tuneable morphologies and textural properties from stoichiometric precursors in aqueous ammonia solution. RSC Adv., 4, 47421-47428 (2014).
66. W. Chaikittisilp, Y. Suzuki, R. R. Mukti, T. Suzuki, K. Sugita, K. Itabashi, A. Shimojima and T. Okubo, Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angew. Chem., Int. Ed., 52, 3355-3359 (2013).
67. S. L. Xue, H. Jiang, Z. X. Zhong, Z. X. Low, R. Z. Chen and W. H. Xing, Palladium nanoparticles supported on a two-dimensional layered zeolitic imidazolate framework-L as an efficient size-selective catalyst. Microporous Mesoporous Mater., 221, 220-227 (2016).
68. H. Jiang, S. L. Xue, Y. F. Liu, R. Z. Chen and W. H. Xing, Controllable synthesis of Pd@ZIF-L catalysts by an assembly method. RSC Adv., 6, 21337-21344 (2016).
69. S. Tanaka, K. Kida, M. Okita, Y. Ito and Y. Miyake, Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature. Chem. Lett., 41, 1337-1339 (2012).
70. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984). Pure Appl. Chem., 57, 603-619 (1985).
71. J. A. Thompson, C. R. Blad, N. A. Brunelli, M. E. Lydon, R. P. Lively, C. W. Jones and S. Nair, Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis. Chem. Mater., 24, 1930-1936 (2012).
72. K. Zhang, R. P. Lively, C. Zhang, R. R. Chance, W. J. Koros, D. S. Sholl and S. Nair, Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations. J. Phys. Chem. Lett., 4, 3618-3622 (2013).
73. C. Sitprasert, F. Y. Wang, V. Rudolph and Z. H. Zhu, Ideal and mixture permeation selectivity of flexible prototypical zeolitic imidazolate framework-8 Membranes. Chem. Eng. Sci., 108, 23-32 (2014).
74. E. Haldoupis, T. Watanabe, S. Nair and D. S. Sholl, Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem, 13, 3449-3452 (2012).
75. B. Motevalli, H. T. Wang and J. Z. Liu, Cooperative Reformable Channel System with Unique Recognition of Gas Molecules in a Zeolitic Imidazolate Framework with Multilevel Flexible Ligands. J. Phys. Chem. C, 119, 16762-16768 (2015).
76. A. X. Zhu, R. B. Lin, X. L. Qi, Y. Liu, Y. Y. Lin, J. P. Zhang and X. M. Chen, Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)(2) and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous Mesoporous Mater., 157, 42-49 (2012).
77. Q. Liu, Z.-X. Low, Y. Feng, S. Leong, Z. Zhong, J. Yao, K. Hapgood and H. Wang, Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Microporous Mesoporous Mater., 194, 1-7 (2014).
78. Y. Liu, N. Wang, L. Diestel, F. Steinbach and J. Caro, MOF membrane synthesis in the confined space of a vertically aligned LDH network. Chem. Commun., 50, 4225-4227 (2014).
79. D. F. Liu, X. L. Ma, H. X. Xi and Y. S. Lin, Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci., 451, 85-93 (2014).
80. C. Hou, Q. Xu, J. Peng, Z. Ji and X. Hu, (110)-Oriented ZIF-8 Thin Films on ITO with Controllable Thickness. ChemPhysChem, 14, 140-144 (2013).
81. M. A. Yu, H. H. Funke, R. D. Noble and J. L. Falconer, H-2 Separation Using Defect-Free, Inorganic Composite Membranes. J. Am. Chem. Soc., 133, 1748-1750 (2011).
82. Z.-X. Low, A. Razmjou, K. Wang, S. Gray, M. Duke and H. Wang, Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J. Membr. Sci., 460, 9-17 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19156-
dc.description.abstract本研究第一部份合成及探討了3種以鋅和二甲基咪唑構成的同質異型性沸石咪唑酯骨架材料:ZIF-8、ZIF-L、dia(Zn)。具有六角型片狀dia(Zn)需要添加甲酸鈉、醋酸、氨水做為催化劑,並在攝氏60度下進行反應;而ZIF-8及ZIF-L在室溫且不需添加催化劑即可合成出來。這說明了合成dia(Zn)的活化能高於ZIF-8及ZIF-L。此外三種晶體以攝氏100度進行了水熱處理以檢測其穩定性:ZIF-8具有最高的水熱穩定性,ZIF-L則具有最低的水熱穩定性。在77K的氮氣吸附檢測中,ZIF-8為孔洞材料;ZIF-L及dia(Zn)則不具有孔洞。但在323.15K的二氧化碳熱重分析中,ZIF-8、ZIF-L及dia(Zn)具有相同數量級的二氧化碳吸附。這顯示了ZIF-L及dia(Zn)的結構會隨著溫度的上升而具有彈性。因此,調整有機金屬骨架的彈性程度是一種有效的方法增加分子分離的效率。
在第二部分的研究提出了一種新穎且可靠的薄膜製備方法:使用了擬多晶形的晶種層,以二維平面材料ZIF-L做為晶種層提供ZIF-8生長,形成ZIF-L@ZIF-8混合薄膜。這個方法使得ZIF-L在薄膜中占有約28%的體積占有率。和傳統的純ZIF-8相比,由於片狀的ZIF-L的使用,使得ZIF-8會沿著晶格<100>的方向生長。在氣體分離的檢測中,ZIF-L@ZIF-8混合薄膜具有較高的氫氣滲透性及氫氣/二氧化碳選擇性。本研究另外使用了有限元素分析分析法進行數值計算,模擬了ZIF-L的擴散係數。我們認為具有層間距的ZIF-L是使得ZIF-L@ZIF-8混合薄膜在氣體分離上有更好的表現的主要原因。
zh_TW
dc.description.abstractThis work reports on the synthesis and stability of a polymorphic system of a metal-organic framework (MOF) composed of zinc and 2-methylimidazole, as well as its potential applicability in gas storage/separation. Three polymorphs, ZIF-8, ZIF-L, and dia(Zn) are discussed in this work. It was found that the synthesis of dia(Zn) with a crystal morphology of hexagonal nanosheets requires a catalyst (NH4OH, CH3COOH, or HCOONa), and a synthesis temperature of 60 °C. In contrast, the synthesis of ZIF-8 and ZIF-L can be conducted in the absence of a catalyst and at room temperature. This suggests that the activation energy of dia(Zn) exceeds that of ZIF-8 and ZIF-L. The three crystals were subjected to hydrothermal treatment at 100 °C to evaluate their stability. The ZIF-8 presented the highest hydrothermal stability, whereas ZIF-L presented the lowest. Nitrogen physisorption tests performed at 77K suggests that the microporosity of ZIF-8 exceeds that of ZIF-L and dia(Zn), which were nearly nonporous. Interestingly, CO2 thermogravimetric analysis revealed that the CO2 adsorption of ZIF-L and dia(Zn) at 323.15K is on par with that of ZIF-8, which implies that the flexibility of ZIF-L and dia(Zn) framework increased considerably with temperature. Tuning the flexibility of the framework is another effective approach to the design of new MOF materials for molecular separation.
A novel methodology involving the use of pseudopolymorphic seeding for the rational synthesis of highly hydrogen-selective hybrid membranes with a zeolitic imidazolate framework (ZIF) was reported. A proof-of-concept was demonstrated using two-dimensional layered ZIF-L as seed crystals for the growth of its pseudopolymorph ZIF-8 in the formation of ZIF-L@ZIF-8 hybrid membranes. This approach enables the incorporation of ZIF-L (with high hydrogen diffusivity) within the ZIF-8 matrix with a volume fraction of ZIF-L of approximately 28%. Compared with conventional secondary growth methods used in the synthesis of pure ZIF-8 membranes, we employed leaf-like ZIF-L with a high aspect ratio as seed crystals for the growth of ZIF-8 membranes with a preferred orientation along the <100> direction. Compared to pure ZIF-8 membranes, the ZIF-L@ZIF-8 hybrid membranes enable a three-fold enhancement in hydrogen permeability and increase the permeative selectivity of hydrogen-over-carbon dioxide from 2.3 to 4.7. Simulation of mass transfer at the microscopic level was used to elucidate the reasons for the enhanced performance of the membrane in gas separation. We determined that the interlayer spacing among ZIF-L crystals, which allows for the rapid diffusion of hydrogen, is probably the key reason for the high separation performance of the ZIF-L@ZIF-8 hybrid membranes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:46:58Z (GMT). No. of bitstreams: 1
ntu-105-R03524063-1.pdf: 4856234 bytes, checksum: f6a755400876293db05fd5f391a1b1cb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
摘要 v
ABSTRACT vii
CONTENTS ix
List of Figures xiii
List of Tables xix
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation and Objective 3
Chapter 2. Literature Reviews 5
2.1 Introduction of Zeolitic Imidazolate Frameworks 5
2.2 Synthesis of ZIFs-Based Membrane 9
Chapter 3. Experimental Section 13
3.1 Chemicals 13
3.2 Synthesis of ZIFs 13
3.2.1 Synthesis of ZIF-8 13
3.2.2 Synthesis of ZIF-L 14
3.2.3 Synthesis of dia(Zn) 14
3.2.4 Test of Hydrothermal Stability 16
3.3 Synthesis of Membrane 16
3.3.1 Synthesis of ZIF-L and ZIF-8 Seed Layers 16
3.3.2 Growth of Hybrid ZIF-L@ZIF-8 and Pure ZIF-8 Membranes 17
3.4 Characterization 18
3.5 Simulation of mass transfer 20
Chapter 4. Synthesis of ZIFs 23
4.1 Morphology and Crystallinity 24
4.2 Porosity and CO2 Adsorption 31
4.3 Hydrothermal Stability 37
Chapter 5. ZIF-L@ZIF-8 Membrane 43
5.1 Morphology and Microstructure of Membranes 43
5.2 Single Gas Permeation 50
5.3 Simulation of Mass Transfer in Membranes at The Microscopic Level 54
Chapter 6. Conclusion 59
Nomenclature 63
Bibliography 65
Appendix A COMSOL-MATLAB Livelink Modeling Scripts Generator for ZIF-L@ZIF-8 Membrane I
dc.language.isoen
dc.title同質異型性沸石咪唑酯骨架材料的合成及氣體分離之應用zh_TW
dc.titlePseudopolymorphisms of Zeolitic Imidazolate Frameworks and Their Application in Gas Separationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林義峰(Yi-Feng Lin),張博凱(Bo-Kai Chang)
dc.subject.keyword有機金屬骨架材料,沸石咪唑酯骨架材料,同質異型性,二氧化碳捕捉及貯存,膜分離,zh_TW
dc.subject.keywordMetal organic frameworks,Zeolitic imidazolate framework,CO2 capture &amp; storage,pseudopolymorphism,pseudopolymorphic seeding,membrane gas separation,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201602096
dc.rights.note未授權
dc.date.accepted2016-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved