請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19144
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李百祺(Pai-Chi LI) | |
dc.contributor.author | Kai-Wen Wu | en |
dc.contributor.author | 吳凱文 | zh_TW |
dc.date.accessioned | 2021-06-08T01:46:33Z | - |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-09 | |
dc.identifier.citation | 1. Sites, B.D. and J.G. Antonakakis, Ultrasound guidance in regional anesthesia: state of the art review through challenging clinical scenarios. Local and regional anesthesia, 2009. 2: p. 1.
2. Kumar, A. and A. Chuan, Ultrasound guided vascular access: efficacy and safety. Best Practice & Research Clinical Anaesthesiology, 2009. 23(3): p. 299-311. 3. San Jose Gastroenterology. Available from: http://www.sjgi.com/image/livrBx.jpg. 4. Souzdalnitski, D., I. Lerman, and T.M. Halaszynski, How to improve needle visibility, in Atlas of ultrasound-guided procedures in interventional pain management. 2011, Springer. p. 35-75. 5. Emergency Ultrasonography. Available from: http://www.emergencyultrasoundteaching.com/image_galleries/physics_images/index.php. 6. Chin, K.J., et al., Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions. Regional anesthesia and pain medicine, 2008. 33(6): p. 532-544. 7. Su, J., et al., Photoacoustic imaging of clinical metal needles in tissue. Journal of biomedical optics, 2010. 15(2): p. 021309-021309-6. 8. Kim, C., et al., Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. Journal of biomedical optics, 2010. 15(4): p. 046010-046010-4. 9. Kim, C., et al. Photoacoustic image-guided needle biopsy of sentinel lymph nodes. in SPIE BiOS. 2011. International Society for Optics and Photonics. 10. Wei, C.-w., et al. Clinically translatable ultrasound/photoacoustic imaging for real-time needle biopsy guidance. in 2014 IEEE International Ultrasonics Symposium. 2014. IEEE. 11. Nishino, H., et al., Modal analysis of hollow cylindrical guided waves and applications. Japanese Journal of Applied Physics, 2001. 40(1R): p. 364. 12. Murray, T.W., K.C. Baldwin, and J.W. Wagner, Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution. The Journal of the Acoustical Society of America, 1997. 102(5): p. 2742-2746. 13. Kim, H., et al., A noncontact NDE method using a laser generated focused-Lamb wave with enhanced defect-detection ability and spatial resolution. Ndt & E International, 2006. 39(4): p. 312-319. 14. Paul A. Meyer, P.D.a.J.L.R. Guided Wave Applications of Piezocomposite Transducers. Available from: http://www.ndt.net/article/meyer2/meyer2.htm. 15. Guided Wave Testing Available from: https://guidedwavetesting.com/guided_wave_testing.html. 16. GUIDEDWAVE. Available from: http://www.gwultrasonics.com/knowledge/pipe/. 17. Simonetti, F. A guided wave technique for needle biopsy under ultrasound guidance. in SPIE Medical Imaging. 2009. International Society for Optics and Photonics. 18. Wilcox, P., M. Lowe, and P. Cawley, Mode and transducer selection for long range Lamb wave inspection. Journal of intelligent material systems and structures, 2001. 12(8): p. 553-565. 19. Silk, M. and K. Bainton, The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics, 1979. 17(1): p. 11-19. 20. Esenaliev, R.O., A.A. Karabutov, and A.A. Oraevsky, Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999. 5(4): p. 981-988. 21. Scruby, C.B. and L.E. Drain, Laser ultrasonics techniques and applications. 1990: CRC Press. 22. Huke, P., et al., Efficient laser generation of Lamb waves. Optics letters, 2014. 39(20): p. 5795-5797. 23. Institute, A.N.S., American National Standard for Safe Use of Lasers. 2007: Laser Institute of America. 24. Ta, D., et al., Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. Ultrasound in medicine & biology, 2009. 35(4): p. 641-652. 25. Moilanen, P., Ultrasonic guided waves in bone. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2008. 55(6): p. 1277-1286. 26. Langley Endodontics. Available from: http://langleyendodontics.ca/wp-content/uploads/2012/10/tooth-cracked.jpeg. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19144 | - |
dc.description.abstract | 超音波影像在目前已經廣泛地被醫師們使用於手術中對於針的輔助導引,由於超音波影像的優勢,使得操作者能夠同時藉由即時影像了解組織的解剖資訊及針在組織中相對應位置。然而由於超音波在針表面的鏡面反射作用會大大限制住超音波探頭與針之間的夾角關係,進而限制手術的靈活自由度。因此本論文提出一種全新利用雷射誘發漏溢聲波的針定位方式,其主要定位原理是基於超音波導波以及其在周圍介質中所產生之漏溢聲波的物理傳播特性。我們利用雷射聚焦在針身的頂部位置以在針表面產生超音波導波,當超音波導波在傳播時同時會洩漏部分能量到周圍產生漏溢聲波,我們便能利用超音波探頭去接收漏溢聲波並去做後續定位計算。在我們的實驗中,我們將26G的不鏽鋼針分別插入塑膠仿體以及豬肉組織中去做定位測試,結果顯示我們的漏溢聲波定位方法能夠在豬肉組織中做到50 mm的定位深度,並且最大的針插入角度能夠到達40°,顯示本方法優於現有的超音波與光聲方法。 | zh_TW |
dc.description.abstract | Ultrasound (US)-guided needle operations have been widely used to visualize both tissue anatomical structures and needle position in real time. However, the US transducer-needle angle is often limited due to specular reflection from the needle surface. We propose a new needle visualization method based on laser-induced leaky acoustic waves. The needle angle and position are calculated based on characteristics of guided waves and leaky acoustic waves. In our approach, the top of the needle shaft is illuminated by laser and guided acoustic waves are subsequently generated, propagating along the needle and leak to the surrounding medium that can be detected by the US transducer. This method was tested with a 26-gauge needle in both a tissue mimicking phantom and porcine muscle tissue. Results show that the detection depth is more than 50 mm and the insertion angle is up to 40°, both are superior than existing ultrasound and photoacoustic methods. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:46:33Z (GMT). No. of bitstreams: 1 ntu-105-R03945004-1.pdf: 3054067 bytes, checksum: 0278f6259cccf92dad0ae52d00349e20 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 超音波穿刺導引 3 1.3 光聲輔助超音波穿刺導引 7 1.4 研究目標 11 第二章 超音波導波與漏溢聲波 12 2.1 超音波導波 12 2.1.1超音波導波 12 2.1.2 管柱超音波導波 14 2.2 漏溢聲波 21 2.3 光聲方式產生超音波導波 23 第三章 實驗方法與實驗架構 25 3.1 超音波導波與漏溢聲波用於定位針方法 25 3.2 超音波導波速度量測方法 29 3.3 實驗架構 31 第四章 實驗結果與討論 34 4.1 超音波導波速度量測 34 4.2 塑膠仿體結果 36 4.3 豬肉離體實驗結果 38 4.4 導波速度校正誤差影響討論 40 4.5 定位角度限制討論與比較 43 4.6 影像深度限制與光轉換效率討論比較 48 4.7 漏溢聲波頻譜分析 50 4.8 漏溢聲波雷射選擇 52 第五章 結論與未來展望 53 5.1 結論 53 5.2 未來展望 54 5.2.1 牙齒導波 54 5.2.2聚焦漏溢聲波 57 參考文獻 59 | |
dc.language.iso | zh-TW | |
dc.title | 利用雷射產生之漏溢聲波進行組織檢查時之針定位 | zh_TW |
dc.title | Laser Generated Leaky Acoustic Waves for Visualization during Needle Biopsy | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭柏齡(Po-Ling Kuo),劉建宏(Jian-Hung Liu),廖愛禾(Ai-Ho Liao),沈哲州(Che-Chou Shen) | |
dc.subject.keyword | 漏溢聲波,雷射誘發導波,影像導引切片檢查, | zh_TW |
dc.subject.keyword | leaky acoustic wave,laser-induced guided wave,image-guided biopsy, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201602144 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。