請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19132
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳亮嘉(Liang-Chia Chen) | |
dc.contributor.author | Jian-Yu Ke | en |
dc.contributor.author | 柯建宇 | zh_TW |
dc.date.accessioned | 2021-06-08T01:46:08Z | - |
dc.date.copyright | 2020-09-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | [1] G. G. Nyambuya, “Revisiting the 1887 Michelson-Morley Experiment,” Journal of Morden Physics, vol. 66, pp.166-168, 2014. [2] G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Applied Optics , vol.29, pp. 3775-3783, 1990. [3] D. Malacara, “Chapter 1:Fizeau interferometer,” in Optical Shop Testing third edition, John Wiley Sons, 2007. [4] D. M. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Applied Optics, vol.35, pp. 131-148, 1996. [5] M. I. Latushko, G. N. Vishnyakov, and G. G. Levin, “Shearing interference microscope with decoding of differential phase patterns of living cells using the phase stepping method,” Measurement Techniques, vol.58, pp. 1238-1243, 2016. [6] K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry”, Journal of Crystal Growth, vol.137, pp.610-622, 1994. [7] Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Applied Optics, vol. 50, Issue 7, pp. B25-B30 , 2011. [8] D. G. Abdelsalam, B. Yao, P. Gao, J. Min and R. Guo, “Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry, ” Applied Optics 51(20), pp. 4891-4895, 2012. [9] K. J. Gåsvik, “Optical Metrology, 3rd ed, John Wiley Sons,” pp. 227-229, 2002. [10] C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” Journal of Optical Society of America, vol.16, pp.2185-2199, 1999. [11] D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. 1. Theory,” Journal of Optical Society of America. 69, pp. 357-366, 1979. [12] D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. 2. Microscope modification, calibration, and planar sample experiments,” Applied optics 19.17, pp.2998-3009, 1980. [13] W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE 1332, pp.525–529, 1991. [14] C. J. Cogswell, N. I. Smith, K. G. Larkin, and Parameswaran Hariharan, “Quantitative DIC microscopy using a geometric phase shifter”. Three-Dimensional Microscopy: Image Acquisition and Processing IV. vol. 2984, 1997. [15] R. N. Zahreddine, R. H. Cormack, Hugh Masterson, Sharon V. King,Carol J. Cogswell,'Real-time quantitative differential interference contrast (DIC) microscopy implemented via novel liquid crystal prisms,' Proceeding of SPIE, vol.8227, 2012. [16] R. T. Frankot and R. Chellappa, 'A method for enforcing integrability in shape from shading algorithms,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 439-451, 1988. [17] S. K. Yu, T. K. Liu, and S. C. Lin, “Height Measurement of Transparent Object by Adopting Differential Interference Contrast Technology,” Applied optics, vol.49, 2588-2596, 2010. [18] J. L. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng, 'Super-resolution differential interference contrast microscopy by structured illumination,' Optics Express, vol. 21, pp. 112-121, 2013. [19] Y. B. Seo, H. B. Jeong, H. G. Rhee, Y. S. Ghim, and K.N. Joo, 'Single-shot freeform surface profiler,' Optics Express, vol.28, pp.3401-3409, 2020. [20] T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, 'Achromatic Savart polariscope: choice of materials,' Optics Express, vol.22, pp.5043-5051, 2014. [21] Revox公司網站。上網日期: 2020年6月20日,檢自https://www.revox.jp/en/products/SLG-150V/ [22] Lucid vision labs公司網站。上網時間:2020年3月16日,檢自http://thinklucid.cn/tech-briefs/polarization-explained-sony-polarized-sensor/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19132 | - |
dc.description.abstract | 差分干涉對比(DIC)顯微術是一種解決傳統光學顯微鏡中由於參考光和物體光強度明顯不相等而產生低對比度干涉的方法。DIC技術最初僅用於增強透明試樣對環境的圖像對比度,但定量化測量的能力近年來在工業應用中變得至關重要,為了重建待測物三維形貌,必須獲得兩正交的DIC相位梯度圖。
本研究研發出一套基於同步空間相移與差分干涉對比技術的量測系統,可用於檢驗奈米級反射型態待測物三維形貌量測,由於共光路的特性,所有軸向振動造成的影響皆可以被兩道光自相抵消,因此本系統具有高度的抗振能力。 本研究之技術發展成功整合空間相位移術、雙折射晶體之分光效應、及傅立葉積分方法等原理達成即時三維形貌量測之目標。系統採用兩片Savart稜鏡,簡單地產生兩組橫向剪切波,此外,藉由偏振態相機搭配四分之一波板,可以立即獲得四幅相位相隔45°之干涉影像進行相位移術,取得兩垂直方向的相位梯度資訊,最後使用Frankot-Chellappa 演算法來進行三維形貌重建。 本文對所提出的系統進行了理論描述,且使用70 nm之標準階高塊作為系統量測之驗證,另外,本系統亦量測一工業產品,微透鏡陣列,並成功重建其三維形貌。 | zh_TW |
dc.description.abstract | Differential interference contrast (DIC) microscopy has been emerging as a solution to overcome the low contrast interference incurred by significantly unequal intensity of reference and object light beams in conventional optical microscopes. Although DIC was originally used to enhance the contrast of transparent sample images, the ability of quantitative measurement has become very important in industrial applications in recent years. In order to reconstruct the 3D profile of the sample, two orthogonal DIC phase gradient maps must be obtained.
A measurement system has been developed based on quantitative simultaneous spatial phase-shifting and differential interference contrast (DIC) technique to measure the 3D profile of the nanoscale reflected samples. Due to the characteristics of common optical path, all the effects of axial vibration can be offset by two beams, so the system introduces high anti-vibration ability. The developed measuring methods employ spatial phase-shifting, light splitting by birefringent crystal and Fourier integration method to achieve the simultaneous measurement of 3D profile. The system used two Savart prisms and simply produced two sets of shear waves. In addition, by combining a polarizing camera with a quarter wave plate, four phase-shifting interference images can be obtained for phase-shifting technique, and phase gradient maps in two vertical directions can be obtained. Finally, Frankot-Chellappa algorithm is used to complete 3D profile reconstruction. The proposed system was theoretically described and verified by step height standard of 70 nm, while the system also measured an industrial product, microlens array, and successfully reconstructed its 3D profile. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:46:08Z (GMT). No. of bitstreams: 1 U0001-1708202017031400.pdf: 9260737 bytes, checksum: 85acb96e467af3ecac9818bfcb46380b (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 2 1.4 論文架構 3 第二章 文獻探討 4 2.1 光干涉原理[6] 4 2.2 相移干涉術 5 2.2.1 相位調制元件與方法 6 2.2.2 時間相移法 7 2.2.3 空間相移法 8 2.3 偏振態理論及表示法 9 2.4 傳統式DIC顯微鏡 11 2.5 定量化DIC顯微鏡 13 2.5.1 稜鏡相位移剪切干涉術 13 2.5.2 PZT相位移剪切干涉術 14 2.5.3 液晶相位移剪切干涉術 14 2.5.4 定量化DIC顯微鏡之應用 15 2.6 現代DIC顯微鏡 16 2.6.1 超解析干涉對比顯微鏡配合結構光 16 2.6.2 同步取像自由曲面輪廓儀 17 2.7 總結 17 第三章 研究方法 20 3.1 系統架構 20 3.2 波前分析 21 3.3 偏振態分析及相位還原 22 3.4 Frankot – Chellappa演算法進行三維形貌重建 26 第四章 量測系統架構與實驗流程 29 4.1 實驗設備與元件 30 4.1.1 實驗光源 30 4.1.2 照明模組 32 4.1.3 剪切模組 35 4.1.4 相位移模組 40 4.2 光線準直測試 42 4.3 光學元件偏振態校正 42 4.4 Savart稜鏡初始光程差校正 44 4.5 標準階高塊量測實驗 45 4.6 工業產品量測實驗 46 第五章 實驗結果與誤差討論 48 5.1 光線準直測試 48 5.2 光學元件偏振態校正 49 5.3 Savart稜鏡初始光程差校正 50 5.4 標準階高塊量測實驗 52 5.5 工業產品量測實驗 58 5.6 量測能力驗證 63 5.7 誤差討論 65 5.7.1 系統誤差 65 5.7.2 外部干擾 66 第六章 結論與未來展望 67 6.1 結論 67 6.2 未來展望 67 參考文獻 68 | |
dc.language.iso | zh-TW | |
dc.title | 定量化準同步差動干涉對比顯微術之研發 | zh_TW |
dc.title | Development of Quantitative Quasi-Simultaneous Differential Interference Contrast Microscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉正良(Cheng-Liang Liu),葉勝利(Sheng-Lih Yeh),林世聰(Shih-Tsong Lin),何昭慶(Chao-Ching Ho) | |
dc.subject.keyword | 差分干涉對比,抗振,同步空間相移,三維表面重建, | zh_TW |
dc.subject.keyword | differential interference contrast,anti-vibration,simultaneous spatial phase-shifting,3D profile reconstruction, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU202003810 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202017031400.pdf 目前未授權公開取用 | 9.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。