請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19099
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭榮和(Jung-Ho Cheng) | |
dc.contributor.author | Mo-Cheng Tsai | en |
dc.contributor.author | 蔡謨丞 | zh_TW |
dc.date.accessioned | 2021-06-08T01:45:02Z | - |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-19 | |
dc.identifier.citation | [1]美國能源局研究報告, Available: https://www.kingautos.net/223088. [2]全球主要國家電動車示範運行推動現況, Available: https://www.car-safety.org.tw/uploads/Rule/全球主要國家電動車示範運行推動現況.pdf. [3]動車產業現況剖析與發展趨勢, Available: https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_5941224 [4]電動車政策時程, Available: https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_594122409.pdf. [5]中國一處稀土礦場開採情況, Available: https://www.ntdtv.com/b5/2014/03/28/a1090466.html. [6]稀土價格走勢, Available: http://www.ifuun.com/a20179135226566/. [7]各國稀土儲量, Available: http://www.sohu.com/a/158006064_99913194. [8]藍亦維, “電動驅動馬達多重物理耦合分析技術,” 工研院機械所, 2017. [9]MAXWELL-虎門科技股份有限公司, Available:https://www.cadmen.com.tw/Page/item/Item.aspx?tp=Item im=72. [10]A. Workbench-虎門科技股份有限公司, Available: https://www.cadmen.com.tw/Page/item/Item.aspx?tp=Item im=72. [11]OPTIMUS, Available: http://www.cybernet-ap.com.tw/zh.php?m=363 t=67. [12]Abaqus/CAE-士盟科技股份有限公司, Available: https://simutech.com.tw/product-simulia-side-nav02.php?cid=1 kid=25. [13]Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 746-765, Apr. 2007. [14]P. Zhang and S. S. Williamson, “Recent status and future prospects of integrated starter-generator based hybrid electric vehicles,' Vehicle Power and Propulsion Conference,” Vehicle Power and Propulsion Conference, pp. 1-8, Sept. 2008. [15]D. Hanselman, “Brushless Permanent Magnet Motor Design,” U.S.A: Cranston, 2003. [16]磁滯曲線資料, Available: http://www.electronics-tutorials.ws/electromagnetism/magnetic-hysteresis.html. [17]R. R. Fessler and M. Olszewski, “Assessment of motor technologies for traction drives of hybrid and electric vehicles,” ORNL/TM-2011/73, Mar. 2011. [18]何凱萍, “應用於複合動力車之高功率密度永磁同步馬達設計方法,” 臺灣大學機械工程學研究所學位論文, 2014. [19]S. Abe and M. Masashi, “Development of IMA motor for 2006 Civic hybrid,” SAE Technical Paper, 2006. [20]IPMSM全區間(MTPA FW)速度操作特性分析, Available: https://www.flotrend.com.tw/files/f-em/jmag/2016/JMAG_FT017.pdf. [21]夏紫穎, “混合磁鐵輔助式磁阻馬達之轉子最佳化設計,” 臺灣大學機械工程學研究所學位論文, 2019. [22]M. Kamiya, “Development of traction drive motor for the Toyota hybrid system,” IEEJ Transactions on industry Applications, pp. 473-479, 2006. [23]Y. Guan, Z. Q. Zhu, I. A. A. Afinowi, J. C. Mipo and P. Farah, “Design of synchronous reluctance and permanent magnet synchronous reluctance machines for electric vehicle application,” 2014 17th International Conference on Electrical Machines and Systems (ICEMS), IEEE, pp. 1853-1859, 2014. [24]P. Niazi, H. A. Toliyat, D. Cheong and J. Kim, “A low-cost and efficient permanent-magnet-assisted synchronous reluctance motor drive,” IEEE Transactions on Industry Applications, vol. 43, no. 2, pp. 542-550, 2007. [25]D. A. Ortega, “Design of a synchronous reluctance motor assisted with permanent magnets for pump applications,” Stockholm, 2015. [26]T. P. B. I. M. Optimization, Available: http://blog.altair.co.kr/wp-content/uploads/2018/09/%E1%84%8E%E1%85%AC%E1%84%89%E1%85%A1%E1%86%BC%E1%84%8B%E1%85%B5%E1%86%AB_%E1%84%8E%E1%85%AC%E1%84%8C%E1%85%A5%E1%86%A8%E1%84%89%E1%85%A5%E1%86%AF%E1%84%80%E1%85%A8%E1%84%8B%E1%85%A7%E1%86%AB%E1%84%80%E1%. [27]詹智翔, “50kW 磁鐵輔助式磁阻馬達磁石減量設計,” 臺灣大學機械工程學研究所學位論文, 2018. [28]M. Han, W. Huang and P. Luo, “Analysis of Rotor’s Magnetic Bridge and Yoke Design to EM’s Performance Influence,” Proceedings of the FISITA 2012 World Automotive Congress, Springer, 2013. [29]X. Liu, H. Chen, J. Zhao and A. Belahcen, “Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles,” IEEE Transactions on Industrial Electronics, pp. 3533-3545, Jun. 2016. [30]W. Wang, M. Wang, S. Zhang, P. Zheng, Z. Fu and Y. Fang, “Electromagnetic and mechanical analyses of less-rare-earth interior permanent-magnet synchronous machine used for electric vehicles,” IEEE Transportation Electrification Conference and Expo, pp. 1-6, 2017. [31]P.J.Otaduy, “The Role of Reluctance in PM Motor,” 2005. [32]J. K. Tangudu, T. M. Jahns and T. P. Bohn, “Design, analysis and loss minimization of a fractional-slot concentrated winding IPM machine for traction applications,” IEEE Energy Conversion Congress and Exposition, pp. 2236-2243, 2011. [33]K. Hwang, S. Rhee, B. Yang and B. Kwon, “Rotor Pole Design in Spoke-Type Brushless DC Motor by Response Surface Method,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1833-1836, Apr. 2007. [34]V. Papanikolaou, “Coupled electromagnetic and structural analysis of support structures for the main rotor electric motor of a hybrid helicopter,” 2014. [35]張顥諺, “電動汽車內藏永磁式同步馬達之電磁熱耦合性能評估,” 臺灣大學機械工程學研究所學位論文, 2014. [36]N. Takahashi, M. Morishita, D. Miyagi and M. Nakano, “Comparison of magnetic properties of magnetic materials at high temperature,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4352-4355, Oct. 2011. [37]新日鐵電磁鋼板型錄, Available: http://www.nssmc.com/product/catalog_download/pdf/D003jec.pdf.. [38]N40UH銣鐵硼稀土磁石資料, Available: https://www.arnoldmagnetics.com/wp-content/uploads/2017/11/N40UH-151021.pdf. [39]徐子庭, “Development of 31kW Interior Permanent-Magnet Synchronous Motor for Electric Vehicles,” 臺灣大學機械工程學研究所學位論文, 2010. [40]W. L. Soong, “Permanent Magnet AC Machine: Principles, Design, Analysis,” School of Electrical and Electronic Engineering University of Adeleide, Australia. [41]陳建霖, “Hairpin 繞組之電動車感應馬達改良設計,” 臺灣大學機械工程學研究所學位論文, 2017. [42]K. Imamura, M. Sanada, S. Morimoto and Y. Inoue, “Improvement of demagnetization by rotor structure of IPMSM with Dy-free rare-earth magnet,” Electrical Machines and Systems (ICEMS), 2012 15th International Conference, pp. 1-6, Oct. 2012. [43]A. Koronides, C. Krasopoulos, D. Tsiakos, M. S. Pechlivanidou and A. Kladas, “Particular Coupled Electromagnetic, Thermal, Mechanical Design of High-Speed Permanent-Magnet Motor,” IEEE Transactions on Magnetics, vol. 56, no. 3, pp. 1-5, Mar. 2020. [44]Y. Hu and T. Wu, “Comprehensive design and modeling of a super high-speed permanent magnet motor,” IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Torino, pp. 28-33, 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19099 | - |
dc.description.abstract | 本論文著重在磁鐵輔助式磁阻馬達的轉子設計與熱固磁耦合分析,透過磁障形式探討與最佳化分析,得到力矩達220Nm之最佳化馬達,相較原型馬達稀土磁石用量減少17.9%,並利用本研究成果之最佳化馬達進行熱固磁耦合分析,探討轉動離心力與熱膨脹對氣隙大小與馬達性能影響,得到轉動離心力所造成的轉子形變,使氣隙略微縮小,讓氣隙磁通密度上升,在結構強度安全之轉速內,對性能造成影響最大為2%,而熱膨脹使氣隙隨著溫度上升而變大,讓氣隙磁通密度隨溫度上升而逐漸下降,在溫度180度內,對性能造成影響最大為4.3%,結合轉動離心力與熱膨脹對性能所造成影響最大為3.2%。 | zh_TW |
dc.description.abstract | This study focuses on the rotor design and thermo-structure-magnetic coupling analysis of the Permanent Magnet Assisted Synchronous Reluctance Motor (PMaSynRM). Through the discussion and optimization analysis of the magnetic barrier, an optimal motor having 220Nm is obtained. The usage of the rare earth permanent magnet is 17.9% less than the prototype motor. And use the optimized motor to conduct thermo-structure-magnetic coupling analysis to explore the influence of centrifugal force and thermal expansion on the air gap size and motor performance. The rotor deformation caused by the centrifugal force causes the air gap size slight reduction and the air gap flux density slight increase. It is obtained that the influence of centrifugal force on motor performance is within 2% within the safe speed of motor structural strength. Thermal expansion causes the air gap to become larger as the temperature rises so that the air gap flux density gradually decreases with the temperature rise. The maximum influence of thermal expansion on performance is 4.3% within 180 degrees Celsius. The maximum influence on motor performance caused by the combination of centrifugal force and thermal expansion is 3.2%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:45:02Z (GMT). No. of bitstreams: 1 U0001-1708202017470000.pdf: 7379024 bytes, checksum: 1602eeeabdd307bb25baaeb5607f4f38 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 1.3 論文架構 4 1.4 使用軟體簡介 5 1.4.1 ANSYS Maxwell 2D[9] 5 1.4.2 ANSYS Workbench(版本19.2)[10] 5 1.4.3 NOESIS Optimus[11] 6 1.4.4 Abaqus[12] 6 第二章 理論背景與文獻回顧 7 2.1 永磁馬達理論背景 7 2.1.1 驅動馬達種類介紹 7 2.1.2 磁場與等效磁路介紹 8 2.1.3 磁性材料特性介紹 10 2.1.4 馬達的損失與效率 14 2.1.5 統御方程式[20] 16 2.2 文獻回顧 19 2.2.1 磁障設計 19 2.2.2 轉子結構 21 2.2.3 耦合分析 23 2.3 小結 26 第三章 原型電機分析與驗證 28 3.1 設計目標及限制 28 3.2 原型電機性能分析 29 3.3 分析與驗證結果比較 33 3.4 小結 34 第四章 轉子改良設計 35 4.1 轉子形式探討 36 4.1.1 磁障形狀探討 36 4.1.2 磁障層數探討 37 4.1.3 磁鐵力矩分析 40 4.2 結構強度分析 41 4.3 小結 44 第五章 轉子最佳化分析 45 5.1 最佳化方法介紹 45 5.2 轉子模型 47 5.3 最佳化分析過程 48 5.4 最佳化分析結果探討 50 5.5 小結 55 第六章 熱固磁耦合分析 56 6.1 轉子非真圓探討 56 6.2 定轉子熱膨脹情況探討 60 6.3 離心力+熱膨脹情況探討 66 6.4 退磁情況探討 68 6.5 原型電機熱固磁耦合分析 71 6.6 小結 72 第七章 結論與未來方向 73 7.1 總結 73 7.2 未來方向 74 參考文獻 75 | |
dc.language.iso | zh-TW | |
dc.title | 磁鐵輔助式磁阻馬達轉子改良設計與熱固磁耦合分析 | zh_TW |
dc.title | Improved Design and Thermo-Structure-Magnetic Coupling Analysis of PMASynRM | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉霆(Tyng Liu),呂百修(Bai-Siou Lyu) | |
dc.subject.keyword | 磁鐵輔助式磁阻馬達,稀土磁鐵,離心力,熱膨脹,熱固磁耦合分析, | zh_TW |
dc.subject.keyword | PMASynRM,NdFeB magnet,centrifugal force,thermal expansion,thermo-structure-magnetic coupling analysis, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202003827 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202017470000.pdf 目前未授權公開取用 | 7.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。