Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19079
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳敏慧(Min-Huey Chen)
dc.contributor.authorSheau-Ling Leeen
dc.contributor.author李曉玲zh_TW
dc.date.accessioned2021-06-08T01:44:22Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation1 Graw, J. The genetic and molecular basis of congenital eye defects. Nat Rev Genet 4, 876-888, doi:10.1038/nrg1202 (2003).
2 Stone, E. M. et al. Identification of a gene that causes primary open angle glaucoma. Science (New York, N.Y.) 275, 668-670 (1997).
3 Ghajar, J. Traumatic brain injury. Lancet (London, England) 356, 923-929, doi:10.1016/s0140-6736(00)02689-1 (2000).
4 Sarkies, N. Traumatic optic neuropathy. Eye (London, England) 18, 1122-1125, doi:10.1038/sj.eye.6701571 (2004).
5 Mey, J. & Thanos, S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602, 304-317 (1993).
6 Berry, M., Ahmed, Z., Lorber, B., Douglas, M. & Logan, A. Regeneration of axons in the visual system. Restorative neurology and neuroscience 26, 147-174 (2008).
7 Sommerfeld, M. T., Schweigreiter, R., Barde, Y. A. & Hoppe, E. Down-regulation of the neurotrophin receptor TrkB following ligand binding. Evidence for an involvement of the proteasome and differential regulation of TrkA and TrkB. The Journal of biological chemistry 275, 8982-8990 (2000).
8 Chen, H. & Weber, A. J. Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats. Brain Res 1011, 99-106, doi:10.1016/j.brainres.2004.03.024 (2004).
9 Nazari, H. et al. Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Progress in retinal and eye research 48, 1-39, doi:10.1016/j.preteyeres.2015.06.004 (2015).
10 Mead, B. et al. Stem cell treatment of degenerative eye disease. Stem Cell Res 14, 243-257, doi:10.1016/j.scr.2015.02.003 (2015).
11 Ramsden, C. M. et al. Stem cells in retinal regeneration: past, present and future. Development (Cambridge, England) 140, 2576-2585, doi:10.1242/dev.092270 (2013).
12 Ramsden, C. M. et al. Neural retinal regeneration with pluripotent stem cells. Developments in ophthalmology 53, 97-110, doi:10.1159/000357363 (2014).
13 Janebodin, K. et al. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PloS one 6, e27526, doi:10.1371/journal.pone.0027526 (2011).
14 Thesleff, I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. Journal of cell science 116, 1647-1648 (2003).
15 Gronthos, S. et al. Stem cell properties of human dental pulp stem cells. J Dent Res 81, 531-535 (2002).
16 Pierdomenico, L. et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80, 836-842 (2005).
17 Zhang, W., Walboomers, X. F., Shi, S., Fan, M. & Jansen, J. A. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue engineering 12, 2813-2823, doi:10.1089/ten.2006.12.2813 (2006).
18 Yang, X. et al. The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. Journal of tissue engineering and regenerative medicine 1, 66-73, doi:10.1002/term.16 (2007).
19 Liu, H. S., Bai, X. W., Yang, Y. & Ge, L. H. [Multilineage potential of pulp stem cells from human young permanent teeth in vitro]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences 39, 41-45 (2007).
20 Kerkis, I. et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? Journal of translational medicine 6, 35, doi:10.1186/1479-5876-6-35 (2008).
21 Stevens, A. et al. Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17, 1175-1184, doi:10.1089/scd.2008.0012 (2008).
22 Balic, A., Aguila, H. L., Caimano, M. J., Francone, V. P. & Mina, M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 46, 1639-1651, doi:10.1016/j.bone.2010.02.019 (2010).
23 Nakatsuka, R. et al. 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol 55, 350-357, doi:10.1016/j.archoralbio.2010.03.003 (2010).
24 Paino, F. et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. European cells & materials 20, 295-305 (2010).
25 Dissanayaka, W. L., Zhu, X., Zhang, C. & Jin, L. Characterization of dental pulp stem cells isolated from canine premolars. Journal of endodontics 37, 1074-1080, doi:10.1016/j.joen.2011.04.004 (2011).
26 Osathanon, T., Nowwarote, N. & Pavasant, P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCgamma signaling pathway. Journal of cellular biochemistry 112, 1807-1816, doi:10.1002/jcb.23097 (2011).
27 Ishkitiev, N. et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. Journal of endodontics 38, 475-480, doi:10.1016/j.joen.2011.12.011 (2012).
28 Young, F., Sloan, A. & Song, B. Dental pulp stem cells and their potential roles in central nervous system regeneration and repair. J Neurosci Res 91, 1383-1393, doi:10.1002/jnr.23250 (2013).
29 Arthur, A., Rychkov, G., Shi, S., Koblar, S. A. & Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26, 1787-1795, doi:10.1634/stemcells.2007-0979 (2008).
30 Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development (Cambridge, England) 127, 1671-1679 (2000).
31 Nosrat, I. V., Widenfalk, J., Olson, L. & Nosrat, C. A. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238, 120-132, doi:10.1006/dbio.2001.0400 (2001).
32 Mead, B., Logan, A., Berry, M., Leadbeater, W. & Scheven, B. A. Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair. Stem Cells, doi:10.1002/stem.2398 (2016).
33 Sakai, K. et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122, 80-90, doi:10.1172/JCI59251 (2012).
34 Yamagata, M. et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44, 551-554, doi:10.1161/STROKEAHA.112.676759 (2013).
35 Mead, B., Logan, A., Berry, M., Leadbeater, W. & Scheven, B. A. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54, 7544-7556, doi:10.1167/iovs.13-13045 (2013).
36 Sathananthan, A. H. Neural stem cells in neurospheres, embryoid bodies, and central nervous system of human embryos. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 17, 520-527, doi:10.1017/s1431927611000584 (2011).
37 Mori, H. et al. Effect of neurosphere size on the growth rate of human neural stem/progenitor cells. J Neurosci Res 84, 1682-1691, doi:10.1002/jnr.21082 (2006).
38 Bez, A. et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Research 993, 18-29, doi:http://dx.doi.org/10.1016/j.brainres.2003.08.061 (2003).
39 Kurosawa, H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of bioscience and bioengineering 103, 389-398, doi:10.1263/jbb.103.389 (2007).
40 Pettinato, G., Wen, X. & Zhang, N. Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays. Sci Rep 4, 7402, doi:10.1038/srep07402 (2014).
41 Louis, S. A. et al. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26, 988-996, doi:10.1634/stemcells.2007-0867 (2008).
42 Aurrekoetxea, M. et al. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Frontiers in Physiology 6, doi:10.3389/fphys.2015.00289 (2015).
43 Gervois, P. et al. Neurogenic Maturation of Human Dental Pulp Stem Cells Following Neurosphere Generation Induces Morphological and Electrophysiological Characteristics of Functional Neurons. Stem Cells Dev 24, 296-311, doi:10.1089/scd.2014.0117 (2015).
44 Wu, 吳(2010) 神經幹細胞在組織培養皿和聚乙烯醇基材上不同行為之探討.台灣大學醫學工程學研究所學位論文 (2010)
45 Sheng-Lin Teng (2012) 聚乙烯醇促進牙髓幹細胞的神經分化 台灣大學牙醫專業學院臨床牙醫學研究所碩士論文(2012)
46 Bissell, M. J. & Barcellos-Hoff, M. H. The influence of extracellular matrix on gene expression: is structure the message? Journal of cell science. Supplement 8, 327-343 (1987).
47 Comoglio, P. M., Boccaccio, C. & Trusolino, L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Current opinion in cell biology 15, 565-571 (2003).
48 Gong, J., Sagiv, O., Cai, H., Tsang, S. H. & Del Priore, L. V. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 86, 957-965, doi:10.1016/j.exer.2008.03.014 (2008).
49 Raymond, S. M. & Jackson, I. J. The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Current biology : CB 5, 1286-1295 (1995).
50 Sheedlo, H. J. et al. RPE-derived factors modulate photoreceptor differentiation: a possible role in the retinal stem cell niche. In vitro cellular & developmental biology. Animal 43, 361-370, doi:10.1007/s11626-007-9051-3 (2007).
51 Strauss, O. The retinal pigment epithelium in visual function. Physiological reviews 85, 845-881, doi:10.1152/physrev.00021.2004 (2005).
52 Zhu, D., Sreekumar, P. G., Hinton, D. R. & Kannan, R. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration. Vision research 50, 643-651, doi:10.1016/j.visres.2009.09.002 (2010).
53 Chiou, S. H. et al. A novel in vitro retinal differentiation model by co-culturing adult human bone marrow stem cells with retinal pigmented epithelium cells. Biochemical and biophysical research communications 326, 578-585, doi:10.1016/j.bbrc.2004.11.061 (2005).
54 Amirpour, N. et al. Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev 21, 42-53, doi:10.1089/scd.2011.0073 (2012).
55 Zhang, X. M. & Yang, X. J. Regulation of retinal ganglion cell production by Sonic hedgehog. Development (Cambridge, England) 128, 943-957 (2001).
56 Zhang, X. M. & Yang, X. J. Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev Biol 233, 271-290, doi:10.1006/dbio.2000.0195 (2001).
57 Gritli-Linde, A. et al. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development (Cambridge, England) 129, 5323-5337 (2002).
58 Shi, S. & Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 18, 696-704, doi:10.1359/jbmr.2003.18.4.696 (2003).
59 Dennis, J. E. et al. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Stem Cells 25, 2575-2582, doi:10.1634/stemcells.2007-0204 (2007).
60 Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer cell 13, 153-166, doi:10.1016/j.ccr.2008.01.013 (2008).
61 He, J. et al. CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Molecular & cellular proteomics : MCP 11, M111.010744, doi:10.1074/mcp.M111.010744 (2012).
62 Michalczyk, K. & Ziman, M. Nestin structure and predicted function in cellular cytoskeletal organisation. Histology and histopathology 20, 665-671 (2005).
63 Katsetos, C. D., Legido, A., Perentes, E. & Mork, S. J. Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. Journal of child neurology 18, 851-866; discussion 867 (2003).
64 Draberova, E. et al. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. Journal of neuropathology and experimental neurology 67, 341-354, doi:10.1097/NEN.0b013e31816a686d (2008).
65 Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B. X. & Ma, J. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102, 12413-12418, doi:10.1073/pnas.0503460102 (2005).
66 van Heyningen, V. & Williamson, K. A. PAX6 in sensory development. Human molecular genetics 11, 1161-1167 (2002).
67 Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. & Harris, W. A. Specification of the vertebrate eye by a network of eye field transcription factors. Development (Cambridge, England) 130, 5155-5167, doi:10.1242/dev.00723 (2003).
68 Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43-55 (2001).
69 Stockman, A. & Sharpe, L. T. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision research 40, 1711-1737 (2000).
70 Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364, 2881-2895, doi:10.1098/rstb.2009.0051 (2009).
71 Serova, M. et al. Preclinical and clinical development of novel agents that target the protein kinase C family. Seminars in oncology 33, 466-478, doi:10.1053/j.seminoncol.2006.04.009 (2006).
72 Mackay, H. J. & Twelves, C. J. Targeting the protein kinase C family: are we there yet? Nature reviews. Cancer 7, 554-562, doi:10.1038/nrc2168 (2007).
73 Greferath, U., Grunert, U. & Wassle, H. Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. The Journal of comparative neurology 301, 433-442, doi:10.1002/cne.903010308 (1990).
74 Haverkamp, S., Haeseleer, F. & Hendrickson, A. A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual neuroscience 20, 589-600 (2003).
75 Xiong, W. H. et al. The Effect of PKCalpha on the Light Response of Rod Bipolar Cells in the Mouse Retina. Invest Ophthalmol Vis Sci 56, 4961-4974, doi:10.1167/iovs.15-16622 (2015).
76 Chia-Yung Lin, 林佳詠 , 2007 Transdifferentiation of Bone Marrow Stem Cells into Acinar Cells Using a Double Chamber System (2007)
77 Mellough, C. B., Sernagor, E., Moreno-Gimeno, I., Steel, D. H. & Lako, M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 30, 673-686, doi:10.1002/stem.1037 (2012).
78 Amirpour, N., Nasr-Esfahani, M. H., Esfandiari, E., Razavi, S. & Karamali, F. Comparing Three Methods of Co-culture of Retinal Pigment Epithelium with Progenitor Cells Derived Human Embryonic Stem Cells. International journal of preventive medicine 4, 1243-1250 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19079-
dc.description.abstract中樞神經系統受損或視網膜的退化,皆會造成視覺功能的障礙,甚至是眼盲。除了過去傳統的支持性治療及神經營養因子(neurotrophins)注射療法,幹細胞的植入會是一個有潛力的治療方式。在過去的研究中證實了幹細胞可以有效促進受傷或退化的視網膜細胞、視神經進行修復與再生。相對於人類之胚胎幹細胞及骨髓幹細胞,牙髓幹細胞(dental pulp stem cells, DPSCs)的取得相對比較簡單,也比較沒有道德倫理上的爭議。牙髓幹細胞源於神經脊(neural crest),已被證實可以有效分化成脂肪細胞、軟骨細胞、成骨細胞、肌細胞、神經細胞等。另外,過去許多實驗中顯示牙髓幹細胞對於保護神經免於傷害以及促進神經修復都有著優異的表現,因此我們相信牙髓幹細胞會是一個很有潛力的幹細胞來源。
人類視網膜色素上皮細胞(retinal pigmented epithelium, RPE)位於視網膜的外圍,在胚胎發育時眼球和視網膜形成過程中扮演了重要的角色。Sonic hedgehog(Shh)調控因子參與眼球早期發育的過程,也是前腦發育中不可或缺的因子。本實驗的假說為,當人類牙髓幹細胞被誘導分化成神經前驅細胞之後,接著與視網膜色素上皮細胞一起共同培養,並加入Sonic hedgehog因子,會被誘導分化成視網膜細胞。實驗中將誘導牙髓幹細胞分化成神經前驅細胞(neural progenitor cells),接著把神經前驅細胞與視網膜色素上皮細胞進行共同培養(co-culture)或是加入Sonic hedgehog以促進其分化成視網膜細胞,此時實驗設計分成四組,分別是R+S組、R組、S組及C組,C為控制組,R代表RPE,S代表Sonic hedgehog因子。
細胞免疫螢光染色和即時聚合酵素連鎖反應的結果顯示,R+S組、R組、S組在第14天的時候都表現了S-Opsin、Pax6和PKC的蛋白標記,並且都有顯著的基因表現。特別的是,S組的Pax6於第14天的基因和蛋白表現比其他組別更顯著,在細胞型態的部分也有明顯的差異。本實驗的結論為人類牙髓幹細胞和視網膜色素上皮細胞之共同培養及加入Sonic hedgehog因子,兩者皆會促進視網膜細胞的分化。單獨加入Sonic hedgehog因子的組別,在分化成視網膜神經節細胞(retinal ganglion cells)和無長突細胞(amacrine cells)的能力更優於其他的組別。
zh_TW
dc.description.abstractInjury of central nervous system and neurodegenerative diseases may contribute to retina cell loss and degeneration, resulting in functional deficits and even blindness. In addition to traditional supportive treatment and neurotrophins injection, stem cell transplantation is a promising therapeutic approach to reduce damage and promote retinal regeneration.
Comparing to human embryonic stem cells(ESCs)and bone marrow stem cells (BMSCs), dental pulp stem cells(DPSCs)are easier to obtain with lesser ethical concerns, and also becoming an alternative source of stem cells. Since dental pulp stem cells(DPSCs)are originated from cranial neural crest, which showed great potential of differentiating into adipogenic, chondrogenic, osteogenic, myogenic and neurogenic lineage. Several in vitro and in vivo studies demonstrating that dental pulp stem cells(DPSCs)protect against neural damage and promote neural repairing and regeneration.
Retinal pigment epithelium(RPE)plays a role in eye development and morphogenesis of neural retina. Besides, Sonic hedgehog factor is essential for embryonic forehead and eye development. We hypothesized that DPSC-derived neural progenitor cells would differentiate into retinal cells by Sonic Hedgehog factor and/or co-culture with RPE under neuronal inductive conditions in vitro. Firstly, we induced dental pulp stem cells(DPSCs)to differentiate into neural progenitor cells, following by retinal differentiation by adding Sonic Hedgehog factor and/or co-culturing with RPE under neural inductive conditions. In retinal differentiation, neural progenitor cells were divided into four groups as C,R,S and R+S groups, which C represent control group which was only DPSCs without any induction, R represent RPE co-culturing and S represent Sonic hedgehog treatment.
Our real time polymerase chain reaction(RT-PCR)and immunocytochemistry staining results indicated that R, S and R+S groups showed both gene and protein expression of S-Opsin, Pax6 and PKC on day 14. Furthermore, S groups showed unique cell morphology from other groups, and S groups also showed greater gene expression and protein expression of Pax6 than other groups on day 14.
Our results indicated that dental pulp stem cells(DPSCs)co-cultured with retinal pigment epithelium(RPE)and Sonic hedgehog treatment, both can induce retinal differentiation of dental pulp stem cells. S group which is individual Sonic hedgehog treatment could induce dental pulp stem cells differentiate into retinal ganglion cells and amacrine cells more significantly than other groups.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:44:22Z (GMT). No. of bitstreams: 1
ntu-105-R02422013-1.pdf: 5811394 bytes, checksum: cfc6d8002dd992b5a5660bce4c42d5b6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 前言 1
1.1 眼睛與視網膜(Eyes and Retina) 1
1.2 視網膜的退化(Retinal Degeneration) 3
1.3 視網膜退化的治療(Therapeutic Approach for Retinal Degeneration) 3
1.4 人類牙髓幹細胞 ( Human Dental Pulp Stem Cells ) 5
1.5 神經分化與神經球(Neural Differentiation and Neurospheres) 6
1.6 視網膜分化(Retinal Differentiation) 7
1.7 調控因子Sonic Hedgehog(Shh)所扮演的角色 8
1.8 細胞標記(Cell Markers) 8
1.8.1 幹細胞標記(Stemness markers) 8
1.8.2 神經細胞標記(Neural markers) 8
1.8.3 視網膜細胞標記(Retinal markers) 9
Chapter 2 實驗假說與目的 11
Chapter 3 實驗方法與材料 12
3.1 實驗設計(Experiment Design) 12
3.2 人類牙髓幹細胞培養(Culturing of DPSCs) 14
3.3 視網膜色素上皮細胞培養(Culturing of RPE) 15
3.4 老鼠之視網膜組織切片製備(Tissue Section Preparation of Mouse’s Retina) 15
3.5 聚乙烯醇基材製備(Polyvinyl Alcohol, PVA Coating ) 16
3.6 神經分化誘導方式(Neural Differentiation Method) 16
3.7 視網膜分化誘導方式(Retinal Differentiation Method) 17
3.8 免疫螢光染色(Immunocytochemistry Staining) 17
3.8.1 細胞化學染色(Cytochemical staining) 17
3.8.2 組織化學染色(Histochemical staining) 19
3.9 即時聚合酵素連鎖反應(Real Time-Polymerase Chain Reaction) 20
3.9.1 RNA的萃取及定量(RNA Isolation and Quantification) 20
3.9.2 聚合酵素連鎖反應(Polymerase Chain Reaction) 21
3.9.3 統計分析(Statistic Analysis) 22
Chapter 4 實驗結果 23
4.1 人類牙髓幹細胞(DPSCs)之型態觀察及檢驗 23
4.2 視網膜上皮色素細胞培養(RPE)之型態觀察及檢驗 23
4.3 免疫螢光染色的細胞標記之檢驗(Positive Controls for Cell Markers) 23
4.4 初步研究(Preliminary Studies) 24
4.4.1 誘導分化培養基之選擇(Selection of Induction Medium) 24
4.4.2 利用聚乙烯醇使牙髓幹細胞聚集成團(Aggregation of Dental Pulp Stem Cells on PVA-coating dish) 25
4.4.3 共同培養之設計(Co-culture Assay Design) 25
4.5 牙髓幹細胞分化成神經前驅細胞(DPSCs Differentiate into Neural Progenitor Cells) 26
4.6 牙髓幹細胞分化之神經前驅細胞繼續分化成視網膜細胞(Neural Progenitor Cells Differentiate into Retinal Cells) 27
Chapter 5 討論 29
5.1 幹細胞的視網膜分化結果之差異(Comparison of Stem Cells’ Retinal Differentiation) 29
5.2 加入B27和N2添加物可以促進幹細胞之視網膜分化(B27 and N2 Supplements Induces Retinal Differentiation of Stem Cells) 31
5.3 比較直接及間接之共同培養方式(Comparison between Direct and Indirect Co-culture Assay) 32
Chapter 6 結論 34
Chapter 7 未來研究方向 35
REFERENCE 70
dc.language.isozh-TW
dc.title人類牙髓幹細胞誘導分化成視網膜細胞之研究zh_TW
dc.titleDifferentiation of Human Dental Pulp Stem Cells into Retinal Cellsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林邵平(Shau-Ping Lin),陳偉勵(Wei-Li Chen)
dc.subject.keyword視網膜,牙髓幹細胞,共同培養,視網膜色素上皮細胞,Sonic hedgehog,zh_TW
dc.subject.keywordRetina,DPSCs,Co-culture,RPE,Sonic hedgehog,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201602644
dc.rights.note未授權
dc.date.accepted2016-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
Appears in Collections:臨床牙醫學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
5.68 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved