請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19069
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 繆希椿(Shi-Chuen Miaw) | |
dc.contributor.author | Yan Zhang Lee | en |
dc.contributor.author | 李妍璋 | zh_TW |
dc.date.accessioned | 2021-06-08T01:44:02Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | Avantaggiati, M.L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A.S., and Kelly, K. (1997). Recruitment of p300/CBP in p53-Dependent Signal Pathways. Cell 89, 1175-1184.
Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A Thymic Precursor to the NK T Cell Lineage. Science 296 553-555. Blobel, G.A. (2000). CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 95, 745-755. Champagne, N., Pelletier, N., and Yang, X. (2001). The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 20, 404-409. Coquet, J.M., Chakravarti, S., Kyparissoudis, K., McNab, F.W., Pitt, L.A., McKenzie, B.S., Berzins, S.P., Smyth, M.J., and Godfrey, D.I. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proceedings of the National Academy of Sciences of the United States of America 105, 11287-11292. Cosmi, L., Liotta, F., Maggi, E., Romagnani, S., and Annunziato, F. (2011). Th17 cells: new players in asthma pathogenesis. Allergy 66, 989-998. Cosmi, L., Maggi, L., Santarlasci, V., Liotta, F., and Annunziato, F. (2014). T helper cells plasticity in inflammation. Cytometry A 85, 36-42. Cote-Sierra, J., Foucras, G., Guo, L., Chiodetti, L., Young, H.A., Hu-Li, J., Zhu, J., and Paul, W.E. (2004). Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A 101, 3880-3885. Fr?nsdal, K., Engedal, N., Slagsvold, T., and Saatcioglu, F. (1998). CREB Binding Protein Is a Coactivator for the Androgen Receptor and Mediates Cross-talk with AP-1. The Journal of Biological Chemistry 273, 31853-31859. Freedman, S.J., Sun, Z.Y., Poy, F., Kung, A.L., Livingston, D.M., Wagner, G., and Eck, M.J. (2002). Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proceedings of the National Academy of Sciences of the United States of America 99, 5367-5372. Fukuyama, T., Kasper, L.H., Boussouar, F., Jeevan, T., van Deursen, J., and Brindle, P.K. (2009). Histone acetyltransferase CBP is vital to demarcate conventional and innate CD8+ T-cell development. Molecular and Cellular Biology 29, 3894-3904. Gately, M.K., Renzetti, L.M., Magram, J., Stern, A.S., Adorini, L., Gubler, U., and Presky, D.H. (1998). The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annual Review of Immunology 16, 495-521. Gerritsen, M.E., Williams, A.J., Neish, A.S., Moore, S., Shi, Y., and Collins, T. (1997). CREB-binding proteinyp300 are transcriptional coactivators of p65. Proceedings of the National Academy of Sciences of the United States of America 94, 2927-2932. Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-κB AND REL PROTEINS: Evolutionarily Conserved Mediators of Immune Responses. Annual Review of Immunology 16, 225-260. Giles, R.H., Peters, D.J.M., and Breuning, M.H. (1998). Conjunction dysfunction:CBP/p300 in human disease. Trends in Genetics 14. Godfrey, D.I., and Berzins, S.P. (2007). Control points in NKT-cell development. Nature Reviews Immunology 7, 505-518. Godfrey, D.I., Stankovic, S., and Baxter, A.G. (2010). Raising the NKT cell family. Nature Immunology 11, 197-206. Goodman, R.H., and Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes & Development 14, 1553-1577. Gumperz, J.E., Miyake, S., Yamamura, T., and Brenner, M.B. (2002). Functionally Distinct Subsets of CD1d-restricted Natural Killer T Cells Revealed by CD1d Tetramer Staining. The Journal of Experimental Medicine 195, 625-636. Holgate, S.T., and Polosa, R. (2008). Treatment strategies for allergy and asthma. Nature Reviews Immunology 8, 218-230. Horvai, A.E., Xu, L., Korzus, E., Brard, G., Kalafus, D., Mullen, T.M., Rose, D.W., Rosenfeld, M.G., and Glass, C.K. (1997). Nuclear integration of JAKySTAT and Ras/AP-1 signaling by CBP and p300. Proceedings of the National Academy of Sciences of the United States of America 94, 1074-1079. Huang, W.C., Ju, T.K., Hung, M.C., and Chen, C.C. (2007). Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Molecular Cell 26, 75-87. Jain, J., Valge-Archer, V.E., and Rao, A. (1992). Analysis of the AP-1 sites in the IL-2 promoter. The Journal of Immunology 148, 1240-1250. Jin, Q., Yu, L.R., Wang, L., Zhang, Z., Kasper, L.H., Lee, J.E., Wang, C., Brindle, P.K., Dent, S.Y., and Ge, K. (2011). Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO Journal 30, 249-262. Kalkhoven, E. (2004). CBP and p300: HATs for different occasions. Biochemical Pharmacology 68, 1145-1155. Kasper, L.H., Fukuyama, T., Biesen, M.A., Boussouar, F., Tong, C., de Pauw, A., Murray, P.J., van Deursen, J.M., and Brindle, P.K. (2006). Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Molecular and Cellular Biology 26, 789-809. Lenardo, M.J., and Baltimore, D. (1989). NF-KB: A Pleiotropic Mediator of Inducible and Tissue-Specific Gene Control Cell 58. Liao, W., Lin, J.X., Wang, L., Li, P., and Leonard, W.J. (2011). Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nature Immunology 12, 551-559. Maier, E., Duschl, A., and Horejs-Hoeck, J. (2012). STAT6-dependent and -independent mechanisms in Th2 polarization. European Journal of Immunology 42, 2827-2833. McKay, L.I., and Cidlowski, J.A. (2000). CBP (CREB Binding Protein) Integrates NF-kB (Nuclear Factor-kB) and Glucocorticoid Receptor Physical Interactions and Antagonism. Molecular Endocrinology 14, 1222-1234. Oh, H., and Ghosh, S. (2013). NF-κB: Roles and Regulation In Different CD4+ T cell subsets. Immunological Reviews 252, 41-51. Pasparakis, M. (2009). Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nature Reviews Immunology 9, 778-788. Pellicci, D.G., Hammond, K.J.L., Uldrich, A.P., Baxter, A.G., Smyth, M.J., and Dale I. Godfrey, D.I. (2002). A Natural Killer T (NKT) Cell Developmental Pathway Involving a Thymus-dependent NK1.1- CD4+ CD1d-dependent Precursor Stage. The Journal of Experimental Medicine 195, 835-844. Romagnani, S. (2000). T-cell subsets (Th1 versus Th2) Annals of Allergy, Asthma & Immunology 85, 9-21. Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L., and Godfrey, D.I. (2012). Recognition of CD1d-restricted antigens by natural killer T cells. Nature Reviews Immunology 12, 845-857. Schmitt, N., and Ueno, H. (2015). Regulation of human helper T cell subset differentiation by cytokines. Current Opinion in Immunology 34, 130-136. Sobulo, O.M., Borrow, J., Tomek, R., Reshmi, S., Harden, A., Schlegelberger, B., Housman, D., Doggett, N.A., Rowley, J.D., and Zeleznik-Le, N.J. (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proceedings of the National Academy of Sciences of the United States of America 94, 8732-8737. Tindemans, I., Serafini, N., Di Santo, J.P., and Hendriks, R.W. (2014). GATA-3 function in innate and adaptive immunity. Immunity 41, 191-206. Torres, L.C., Kulikowski, L.D., Ramos, P.L., Sugayama, S.M., Moreira-Filho, C.A., and Carneiro-Sampaio, M. (2013). Disruption of the CREBBP gene and decreased expression of CREB, NFkappaB p65, c-JUN, c-FOS, BCL2 and c-MYC suggest immune dysregulation. Human Immunology 74, 911-915. Van Kaer, L., Parekh, V.V., and Wu, L. (2011). Invariant natural killer T cells: bridging innate and adaptive immunity. Cell and Tissue Research 343, 43-55. Vo, N., and Goodman, R.H. (2001). CREB-binding protein and p300 in transcriptional regulation. Journal of Biological Chemistry 276, 13505-13508. Watarai, H., Sekine-Kondo, E., Shigeura, T., Motomura, Y., Yasuda, T., Satoh, R., Yoshida, H., Kubo, M., Kawamoto, H., Koseki, H., and Taniguchi, M. (2012). Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biology 10, e1001255. Webster, G.A., and Perkins, N.D. (1999). Transcriptional Cross Talk between NF-kB and p53. Molecular and Cellular Biology 19, 3485-3495. Yamamoto, Y., Yin, M., and GAYNOR, R.B. (2000). IkB Kinase a (IKKa) Regulation of IKKb Kinase Activity. Molecular and Cellular Biology 20, 3655-3666. Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M., and Karin, M. (1997). The IkB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKa and IKKb, Necessary for IkB Phosphorylation and NF-kB Activation. Cell 91, 243-252. Zhu, J., Yamane, H., and Paul, W.E. (2010). Differentiation of effector CD4 T cell populations Annual Review of Immunology 28, 445-489. Barondes, S.H., Cooper, D.N.W., Gitt, M.A., and Leffler, H. (1994). Structure and function of a large family of animal lectins. The Journal of Biological Chemistry 269, 20807-20810. Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A Thymic Precursor to the NK T Cell Lineage. Science 296, 553-555. Bernardes, E.S., Silva, N.M., Ruas, L.P., Mineo, J.R., Loyola, A.M., Hsu, D.K., Liu, F.T., Chammas, R., and Roque-Barreira, M.C. (2006). Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. American Journal of Pathology 168, 1910-1920. Bhaumik, P., St-Pierre, G., Milot, V., St-Pierre, C., and Sato, S. (2013). Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection. The Journal of Immunology 190, 630-640. Brennan, P.J., Brigl, M., and Brenner, M.B. (2013). Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nature Reviews Immunology 13, 101-117. Constantinides, M.G., and Bendelac, A. (2013). Transcriptional regulation of the NKT cell lineage. Current Opinion in Immunology 25, 161-167. Coquet, J.M., Chakravarti, S., Kyparissoudis, K., McNab, F.W., Pitt, L.A., McKenzie, B.S., Berzins, S.P., Smyth, M.J., and Godfrey, D.I. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proceedings of the National Academy of Sciences of the United States of America 105, 11287-11292. Curciarello, R., Steele, A., Cooper, D., MacDonald, T.T., Kruidenier, L., and Kudo, T. (2014). The role of Galectin-1 and Galectin-3 in the mucosal immune response to Citrobacter rodentium infection. PLoS One 9, e107933. Di Lella, S., Sundblad, V., Cerliani, J.P., Guardia, C.M., Estrin, D.A., Vasta, G.R., and Rabinovich, G.A. (2011). When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50, 7842-7857. Ferraz, L.C., Bernardes, E.S., Oliveira, A.F., Ruas, L.P., Fermino, M.L., Soares, S.G., Loyola, A.M., Oliver, C., Jamur, M.C., Hsu, D.K., et al. (2008). Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. European Journal of Immunology 38, 2762-2775. Ge, X.N., Bahaie, N.S., Kang, B.N., Hosseinkhani, M.R., Ha, S.G., Frenzel, E.M., Liu, F.T., Rao, S.P., and Sriramarao, P. (2010). Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. Journal of Immunology 185, 1205-1214. Godfrey, D.I., and Berzins, S.P. (2007). Control points in NKT-cell development. Nature Reviews Immunology 7, 505-518. Godfrey, D.I., Stankovic, S., and Baxter, A.G. (2010). Raising the NKT cell family. Nature Immunology 11, 197-206. Gumperz, J.E., Miyake, S., Yamamura, T., and Brenner, M.B. (2002). Functionally Distinct Subsets of CD1d-restricted Natural Killer T Cells Revealed by CD1d Tetramer Staining. The Journal of Experimental Medicine 195, 625-636. Hsu, D.K., Chen, H.-Y., and Liu, F.-T. (2009). Galectin-3 regulates T-cell functions. Immunological Reviews 230, 114-127. Joo, H.-G., Goedegebuure, P.S., Sadanaga, N., Nagoshi, M., Bernstorff, W.v., and Eberlein, T.J. (2001). Expression and function of galectin-3, a b-galactoside-binding protein in activated T lymphocytes. Journal of Leukocyte Biology 69, 555-564. Linden, J.R., Kunkel, D., Laforce-Nesbitt, S.S., and Bliss, J.M. (2013). The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cellular Microbiology 15, 1127-1142. Nieminen, J., St-Pierre, C., Bhaumik, P., Poirier, F., and Sato, S. (2008). Role of Galectin-3 in Leukocyte Recruitment in a Murine Model of Lung Infection by Streptococcus pneumoniae. The Journal of Immunology 180, 2466-2473. O'Brien, T., Bao, K., Dell'Aringa, M., Ang, W., Abraham, S., and Reinhardt, R.L. (2016). Cytokine expression by invariant natural killer T cells is tightly regulated throughout development and settings of type-2 inflammation. Mucosal Immunology 9, 597-609. Pellicci, D.G., J.L.Hammond, K., Uldrich, A.P., Baxter, A.G., Smyth, M.J., and Godfrey, D.I. (2002). A Natural Killer T (NKT) Cell Developmental Pathway Involving a Thymus-dependent NK1.1- CD4+ CD1d-dependent Precursor Stage. The Journal of Experimental Medicine 195, 835-844. Rabinovich, G.A., Liu, F.T., Hirashima, M., and Anderson, A. (2007). An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scandinavian Journal of Immunology 66, 143-158. Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L., and Godfrey, D.I. (2012). Recognition of CD1d-restricted antigens by natural killer T cells. Nature Reviews Immunology 12, 845-857. Ruas, L.P., Bernardes, E.S., Fermino, M.L., de Oliveira, L.L., Hsu, D.K., Liu, F.T., Chammas, R., and Roque-Barreira, M.C. (2009). Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS One 4, e4519. Saegusa, J., Hsu, D.K., Chen, H.Y., Yu, L., Fermin, A., Fung, M.A., and Liu, F.T. (2009). Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. The American Journal of Pathology 174, 922-931. Van Kaer, L., Parekh, V.V., and Wu, L. (2011). Invariant natural killer T cells: bridging innate and adaptive immunity. Cell and Tissue Research 343, 43-55. Watarai, H., Sekine-Kondo, E., Shigeura, T., Motomura, Y., Yasuda, T., Satoh, R., Yoshida, H., Kubo, M., Kawamoto, H., Koseki, H., and Taniguchi, M. (2012). Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biology 10, e1001255. Wu, S.Y., Yu, J.S., Liu, F.T., Miaw, S.C., and Wu-Hsieh, B.A. (2013). Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. Journal of Immunology 190, 3427-3437. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19069 | - |
dc.description.abstract | CREB (cAMP response element-binding protein) 結合蛋白 (CBP) 是轉錄共活化因子,其參與了許多蛋白質的交互作用。CBP的基因突變或功能缺陷被證實與魯賓斯坦-泰必氏綜合症(Rubinstein-Taybi Syndrome;RTS)及急性骨髓性白血病等疾病有相關聯性。利用小鼠模式證實在胸腺細胞中條件式基因剔除CBP會降低週邊血中的CD4+ 和CD8+ T 細胞數。此外,胸腺CBP條件式基因剔除會導致CD8+ T細胞展現出作用型、記憶型或先天性免疫T細胞的特性,並且在接受刺激後快速地產生干擾素伽瑪(IFN-γ)。先前研究證實IκB磷酸激酶複合體(kinase complex)中的一個蛋白單體IKKα會磷酸化CBP上1382和1386位置的絲胺酸,進而改變CBP的結合傾向由NF-κB至p53。然而,CBP絲胺酸磷酸化在輔助型T細胞分化與iNKT細胞產生細胞激素中所扮演的角色仍未被深入探討。
在本研究中,我們利用CBP絲胺酸磷酸化突變小鼠(CBPS1383/1387Am/m; AA)證實野生型(WT)及AA小鼠腸繫膜淋巴結輔助型T細胞在經過刺激後所產生的細胞激素並沒有顯著差異。WT和AA小鼠的處女T細胞分化成第一型和第二型輔助型T細胞的能力也相似。這些結果顯示CBP的突變並不會影響輔助型T細胞的分化。此外,WT及AA小鼠脾臟、週邊淋巴結及腸繫膜淋巴結中的iNKT細胞族群及次族群沒顯著差異,暗示CBP突變不會影響iNKT細胞的發育及分化。在α-GalCer的刺激下,WT和AA小鼠iNKT細胞所產生的干擾素伽瑪 (IFN-γ),介白素-4 (IL-4)及介白素-17 (IL-17) 也不具顯著差異。總結來説,我們的研究顯示CBP絲胺酸磷酸化的突變並沒有參與輔助型T細胞的分化及iNKT細胞產生細胞激素的調控。 半乳糖凝集素-3 (Galectin-3) 是含有碳水化合物識別區 (CRD) 的半乳糖苷結合蛋白質,參與了許多免疫細胞的調控,其中包括了巨噬細胞、單核細胞、嗜中性白血球、T細胞及B細胞。Galectin-3的功能十分多樣化,如參與細胞活化、黏附、遷移、去顆粒、細胞凋亡及細胞激素的分泌。然而,Galectin-3在不變的自然殺手T細胞 (iNKT cells) 中調控免疫反應及細胞激素產生所扮演的角色尚未釐清。在被刺激的情況下,iNKT細胞會很迅速的產生細胞激素如干擾素伽瑪 (IFN-γ)、腫瘤壞死因子 (TNF)、介白素 (Interleukin) IL-2、IL-3、IL-4、IL-5、IL-9、IL-10、IL-13、IL-17、IL-21及顆粒球巨噬細胞株刺激因子(GM-CSF)。此外,不同的iNKT次族群如第一型iNKT細胞 (iNKT1)、第二型iNKT細胞 (iNKT2)及第十七型iNKT細胞 (iNKT17) 負責產生不同的細胞激素。 在本研究中,我們欲探討Galectin-3在iNKT細胞中細胞激素產生所扮演的角色。結果顯示在α-GalCer的刺激下,野生型 (WT) 及半乳糖凝集素-3缺失型 (Gal-3 KO) 小鼠的胰臟、週邊淋巴結及腸繫膜淋巴結的iNKT細胞所產生的干擾素伽瑪 (IFN-γ)、介白素-4(IL-4)及介白素-17 (IL-17) 皆相似不具顯著差異,除了Gal-3 KO小鼠腸繫膜淋巴結iNKT細胞比WT iNKT細胞產生較少的IFN-γ。此外,我們的結果也顯示WT及Gal-3 KO小鼠脾臟、週邊淋巴結及腸繫膜淋巴結iNKT細胞的次族群在統計上沒有顯著差異。 總結來說,我們的研究結果顯示Galectin-3不影響iNKT細胞產生細胞激素。然而,我們不排除Galectin-3調控iNKT細胞其他功能的可能性。 | zh_TW |
dc.description.abstract | CREB (cAMP response element-binding protein) binding protein (CBP) is a transcriptional coactivator that plays an important role in the protein-protein interaction. Genetic alteration or functional inactivation of CBP had been showed to associate with Rubinstein-Taybi syndrome (RTS) and acute myeloid leukemia. In mouse model, condition knock-out of CBP in thymocytes showed reduced number of peripheral blood CD4+ and CD8+ T cells. Besides, condition knock-out of CBP in thymus results in CD8+ thymocytes with effector-, memory-, or innate-like T-cell phenotype and producing the effector cytokine IFN-γ rapidly upon stimulation. Previous study showed that subunit of IκB kinase complex, IKKα can phosphorylate CBP at Ser-1382 and Ser-1386 and switch the CBP binding preference from NF-κB to p53. However, the roles of CBP serine phosphorylation in TH cell differentiation and iNKT cell cytokine production remain unclear.
In this study, CBP serine phosphorylation mutant mice (CBPS1383/1387Am/m; AA) are employed and we found out that cytokines production by T helper cells in mesenteric lymph nodes (mLNs) of WT mice and AA mice were comparable after stimulation. Furthermore, the abilities of naïve T cells to differentiate into TH1 and TH2 cells were similar in WT and AA mice. These results together indicated that CBP mutant does not affect the TH cell differentiation. Furthermore, population and subpopulation of iNKT cells in the spleen (SP), peripheral lymph nodes (pLNs) and mesenteric lymph nodes (mLNs) of WT and AA mice were comparable, indicated that CBP mutant did not affect the development and differentiation of iNKT cells. Upon α-GalCer stimulation, IFN-γ, IL-4 and IL-17 produced by iNKT cells in WT and AA mice were comparable. In conclusion, our study showed that CBP serine phosphorylation mutant does not play a role in the T helper cell differentiation and the cytokine production by iNKT cells. Galectin-3 (Gal-3), a β-galactoside-binding animal lectin carrying carbohydrate-recognition domains (CRD) is involved in the regulation of many immune cells including macrophage, monocyte, neutrophils, T and B lymphocytes. Functions of Gal-3 are diverse such as cell activation, adhesion, migration, degranulation, apoptosis and cytokine secretion. However, the role of Gal-3 in invariant natural killer T (iNKT) cells-mediated immune responses and cytokine production is not yet elucidated. Upon stimulation, iNKT cells rapidly produce variety of cytokines including IFN-γ, tumor necrosis factor (TNF), IL-2, IL-3, IL-4, IL-5, IL-9, IL-10, IL-13, IL-17, IL-21 and GM-CSF. Moreover, different subsets of iNKT cells, i.e. iNKT1, iNKT2 and iNKT17, produce distinct cytokines. In this study, I aim to clarify the role of Gal-3 in cytokine production by iNKT cells. Our results demonstrate that upon α-GalCer stimulation, IFN-γ, IL-4 and IL-17 produced by iNKT cells in spleen (SP), peripheral lymph nodes (pLNs) and mesenteric lymph nodes (mLNs) of wild type (WT) mice and galectin-3 knock out (Gal-3 KO) mice are comparable except in mLN of Gal-3 KO mice, which produced less IFN-γ compared to WT mice. Furthermore, our data indicate that similar pattern of iNKT subpopulation in the SP, pLN and mLN of WT and Gal-3 KO mice after stimulation. This work indicates that Galectin-3 do not play a role in iNKT cell cytokine production. However, we do not exclude the possibility that there is a regulatory role in iNKT cells mediated by Galectin-3. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:44:02Z (GMT). No. of bitstreams: 1 ntu-105-R03449014-1.pdf: 2014909 bytes, checksum: 99ebb907ab8ddd7daa1cc52c9dffa43a (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Acknowledgements i
中文摘要 ii Abstract iii Introduction 1 1. CD4+ T helper cells 1 1.1 TH1 cells 1 1.2 TH2 cells 2 2. iNKT cells 3 3. CREB binding protein 4 3.1 CBP and human disease 5 3.2 CBP and immunity 6 4. Significance and specific aims 8 Materials and Methods 11 1. Materials 11 1.1 Antibodies 11 1.2 Buffers 12 1.3 Chemicals and Reagents 13 1.4 Cytokines 14 1.5 Kits 14 1.6 Mice 15 2. Methods 15 2.1 In vitro TH cell differentiation 15 2.2 Quantitative real-time PCR (qPCR) 16 2.3 Enzyme-Linked Immunosorbent Assay (ELISA) 18 2.4 In vivo stimulation 18 2.5 Ex vivo cytokine analysis 18 Results 20 1. Cytokines production by T cells in mLNs of WT mice and AA mice were comparable after stimulation. 20 2. The abilities of naïve T cells to differentiate into TH1 and TH2 cells were similar in WT and AA mice. 21 3. Population of iNKT cells in the SP, pLNs and mLNs of WT and AA mice were comparable. 22 4. Similar subpopulations of iNKT cells were found in the SP, pLNs and mLNs of WT and AA mice after stimulation. 23 5. Upon α-GalCer stimulation, IFN-γ, IL-4 and IL-17 produced by iNKT cells in WT and AA mice were comparable. 24 Figures 30 References 46 Supplementary 53 中文摘要 I Abstract II Introduction 54 1. Galectin-3 54 2. iNKT cells and immune system 56 3. Significance and specific aim 58 Materials and Methods 59 1. Materials 59 1.1 Antibodies 59 1.2 Buffers 60 1.3 Chemicals and Reagents 61 1.4 Cytokines 62 1.5 Kits 62 1.6 Mice 62 2. Methods 63 2.1 In vivo stimulation 63 2.2 Ex vivo cytokine analysis 63 2.3 Expansion of iNKT cells 64 2.4 Polarization of iNKT 17 cells in vitro 64 2.5 DNA isolation and genotyping 65 Results 66 1. Similar subpopulations of iNKT cells were found in the SP, pLNs and mLNs of WT and Gal-3 KO mice after stimulation. 66 2. Upon α-GalCer stimulation, IFN-γ, IL-4 and IL-17 produced by iNKT cells in WT mice and Gal-3 KO mice were comparable. 67 3. Percentage of IL-17-producing iNKT17 cells in pLNs were comparable in WT mice and Gal-3 KO mice. 68 4. Genotyping of WT and Gal-3 KO mice. 69 Discussion and conclusion 70 Figures 72 References 84 | |
dc.language.iso | en | |
dc.title | CBP絲胺酸磷酸化在輔助型T細胞分化與iNKT細胞產生細胞激素中所扮演的角色 | zh_TW |
dc.title | The role of CBP serine phosphorylation in T helper cell differentiation and iNKT cell cytokine production | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 伍安怡(Betty An-Ye Wu-Hsieh),陳青周(Ching-Chow Chen),張雅貞(Ya-Jen Chang) | |
dc.subject.keyword | 絲胺酸磷酸化,輔助型T細胞,iNKT細胞, | zh_TW |
dc.subject.keyword | CBP,serine phosphorylation,T helper cell,iNKT cell, | en |
dc.relation.page | 88 | |
dc.identifier.doi | 10.6342/NTU201602284 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。