請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19068完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳漢忠,江俊斌 | |
| dc.contributor.author | Meng-Jhe Chung | en |
| dc.contributor.author | 鍾孟哲 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:43:59Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin Oncol. 2003, 30, 3–14.
Bartlett, G. R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959, 234, 466-468. Bei R, Budillon A, Masuelli L. Frequent overexpression of multiple ErbB receptors by head and neck squamous cell carcinoma contrasts with rare antibody immunity in patients. J Pathol. 2004, 204, 317–325. Bentzen SM, Atasoy BM, Daley FM. Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol. 2005, 23, 5560–5567. Blot WJ, McLaughlin JK, Winn DM. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988, 48, 3282–3287. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010, 11, 21–28. C. Gridelli, M.A. Bareschino, C. Schettino, A. Rossi, P. Maione, F. Ciardiello Carter CA, Kelly RJ, Giaccone G. Small-molecule inhibitors of the human epidermal receptor family. Expert Opin Investig Drugs. 2009, 18, 1829–1842. Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP. Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer. 2005, 114, 806–816. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology. 2009, 157, 220-233. Chan WH, Shiao NH. Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin. 2008, 29, 259–266. Chari, R. V. J., Miller, M. L. & Widdison, W. C. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 2014, 53, 3796–3827. Chinnaiyan P, Huang S, Vallabhaneni G, Armstrong E, Varambally S, Tomlins SA, Chinnaiyan AM, Harari PM. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva) Cancer Res. 2005, 65, 3328–3335. Cho HS, Leahy DJ. Structure of the extracellular region of HER3 reveals an interdomain tether. Science. 2002, 297, 1330–1333. Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X, Shockley WW, Weissler MC, Dressler LG, Shores CG, Yarbrough WG, Perou CM.Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs. 2000, 60(Suppl 1), 25–32. Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X, Shockley WW, Weissler MC, Dressler LG, Shores CG, Yarbrough WG, Perou CM. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004, 5, 489–500. Cohen RB. Epidermal growth factor receptor as a therapeutic target in colorectal cancer. Clin Colorectal Cancer. 2003, 2, 246–251. Cooper JB, Cohen EE. Mechanisms of resistance to EGFR inhibitors in head and neck cancer. Head Neck. 2009, 31, 1086–1094. Coutinho AK, Rocha Lima CM. Metastatic colorectal cancer: systemic treatment in the new millennium. Cancer Control. 2003, 10, 224–238. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004, 351, 337–345. D. Colcher, G. Pavlinkova, G. Beresford, B. J. M. Booth, A. Choudhury, and S. K. Batra. Pharmacokinetics and biodistribution of genetically-engineered antibodies. Quarterly Journal of Nuclear Medicine. 1998, 42, 225–241. D. Griffiths and A. R. Duncan. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol. 1998, 9, 102–108. Dai Q, Ling YH, Lia M, et al. Enhanced sensitivity to the HER1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib hydrochloride in chemotherapy-resistant tumor cell lines. Clin Cancer Res. 2005, 11, 1572–1578. Eriksen JG, Steiniche T, Askaa J, Alsner J, Overgaard J. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys. 2004, 58, 561–566. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003, 11, 507–517. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S,Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003, 21, 2237–2246. G. Galizia, E. Lieto, F. De Vita, M. Orditura, P. Castellano, T. Troiani, V. Imperatore, F. Ciardiello. Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene. 2007, 26, 3654–3660. Gabizon, A. et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994, 54, 987–992. Garrett TP, McKern NM, Lou M, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell. 2002, 110, 763–773. Goessel G, Quante M, Hahn WC, Harada H, Heeg S, Suliman Y, Doebele M, von Werder A, Fulda C, Nakagawa H,Rustgi AK, Blum HE, Opitz OG. Creating oral squamous cancer cells: a cellular model of oral–esophageal carcinogenesis. Proc. Natl Acad. Sci. USA. 2005, 102, 15599–15604. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993, 53, 3579–3584. Grandis, J. R. & Tweardy, D. J. Elevated levels of transforming growth factor α and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993, 53, 3579–3584. Gridelli C, Bareschino MA, Schettino C, Rossi A, Maione P, Ciardiello F. Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist. 2007, 12, 840–849. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer. 2004, 4, 361–370. Hama T, Yuza Y, Saito Y, O-uchi J, Kondo S, Okabe M, Yamada H, Kato T, Moriyama H, Kurihara S, Urashima M. Prognostic significance of epidermal growth factor receptor phosphorylation and mutation in head and neck squamous cell carcinoma. Oncologist. 2009, 14, 900–908. Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res. 2003, 284, 2–13. Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW,Fabianova E, Fernandez L, Wünsch-Filho V, Franceschi S, Hayes RB, Herrero R, Kelsey K, Koifman S, La Vecchia C,Lazarus P, Levi F, Lence JJ, Mates D, Matos E, Menezes A, McClean MD, Muscat J, Eluf-Neto J, Olshan AF, Purdue M, Rudnai P, Schwartz SM, Smith E, Sturgis EM, Szeszenia-Dabrowska N, Talamini R, Wei Q, Winn DM, Shangina O,Pilarska A, Zhang ZF, Ferro G, Berthiller J, Boffetta P. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiology, Biomarkers and Prev. 2009, 18, 541–550. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 2000, 156, 1363–1380. Hecht JR, Patnaik A, Berlin J, Venook A, Malik I, Tchekmedyian S, Navale L, Amado RG, Meropol NJ. Panitumumab monotherapy in patients with previously treated metastatic colorectal cancer. Cancer. 2007, 110, 980–988. Houri, N., Huang, K. C. & Nalbantoglu, J. The coxsackievirus and adenovirus receptor (CAR) undergoes ectodomain shedding and regulated intramembrane proteolysis (RIP). PLoS ONE. 2013, 8, e73296. Hu JC, Sadeghi P, Pinter-Brown LC, Yashar S, Chiu MW. Cutaneous side effects of epidermal growth factor receptor inhibitors: clinical presentation, pathogenesis, and management. J Am Acad Dermatol. 2007, 56, 317–326. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res.1999, 59, 1935–1940. Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res. 2000, 6, 2166–2174. Huang, J. et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano. 2010, 4, 7151–7160. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nature Rev. Clin. Oncol. 2010, 7, 653–664. James A. Bonner, Paul M. Harari, Jordi Giralt, Nozar Azarnia, Dong M. Shin, Roger B. Cohen, Christopher U. Jones, , Ranjan Sur, David Raben, Jacek Jassem, Roger Ove, Merrill S. Kies, Jose Baselga, Hagop Youssoufian, Nadia Amellal, Eric K. Rowinsky, and K. Kian Ang. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2006, 354, 567–578. Jin Y, Liu Y, Lin Q, Li J, Druso JE, Antonyak MA, Meininger CJ, Zhang SL, Dostal DE, Guan JL, Cerione RA, Peng X. Deletion of Cdc42 enhances ADAM17 mediated vascular endothelial growth factor receptor 2 shedding and impairs vascular endothelial cell survival and vasculogenesis. Mol. Cell. Biol. 2013, 33, 4181–4197. Kamangar, F., Dores, G. M. & Anderson, W. F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 2006, 24, 2137–2150. Kelderhouse LE, Chelvam V, Wayua C, Mahalingam S, Poh S, Kularatne SA, Low PS. Development of tumor-targeted near infrared probes for fluorescence guided surgery. Bioconjug. Chem. 2013, 24, 1075–1080. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A,Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003, 290, 2149–2158. Ku, S. K., Han, M. S., Lee, M. Y., Lee, Y. M. & Bae, J. S. Inhibitory effects of oroxylin A on endothelial protein C receptor shedding in vitro and in vivo. BMB Rep. 2014, 47, 336–341. Kyzas PA, Cunha IW, Ioannidis JP. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res. 2005, 11, 1434–1440. Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ. Prognostic significance of VEGF immunohistochemical expression and tumor angiogenesis in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol. 2005, 131, 624–630. Leamon CP, Parker MA, Vlahov IR, Xu LC, Reddy JA, Vetzel M, Douglas N. Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc based radiopharmaceutical. Bioconjugate Chem. 2002, 13, 1200–1210. Leamon CP, Vlahov IR, Reddy JA, Vetzel M, Santhapuram HK, You F, Bloomfield A, Dorton R, Nelson M, Kleindl P,Vaughn JF, Westrick E. Folate–vinca alkaloid conjugates for cancer therapy: a structure-activity relationship. Bioconjug. Chem. 2014, 25, 560–568. Lee JW, Soung YH, Kim SY, Nam HK, Park WS, Nam SW, Kim MS, Sun DI, Lee YS, Jang JJ, Lee JY, Yoo NJ, Lee SH. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 2005, 11, 2879–2882. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010, 141, 1117–1134. Lemmon, M. A., Schlessinger, J. & Ferguson, K. M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 2014, 6, a020768. Li T, Perez-Soler R. Skin toxicities associated with epidermal growth factor receptor inhibitors. Target Oncol. 2009, 4, 107–119. Liang K, Ang KK, Milas L, et al. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys. 2003, 57, 246–254. Loeffler-Ragg J, Witsch-Baumgartner M, Tzankov A, Hilbe W, Schwentner I, Sprinzl GM, Utermann G, Zwierzina H. Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma. Eur. J. Cancer. 2006, 42, 109–111. Lu, R. M., Chang, Y. L., Chen, M. S. and Wu, H. C. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor targeted imaging and drug delivery. Biomaterials. 2011, 32, 3265-3274. Lynch DH, Yang XD. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin Oncol. 2002, 29, 47–50. M. D. Winthrop, S. J. DeNardo, H. Albrecht et al. Selection and characterization of anti-MUC-1 scFvs intended for targeted therapy. Clin Cancer Res. 2003, 9, 3845S–3853S. M.V. Karamouzis, J.R. Grandis, A. Argiris. Therapies directed against epidermal growth factor receptor in aerodigestive carcinomas. JAMA. 2007, 298, 70–82. Manzoor AA, Lindner LH, Landon CD, Park JY, Simnick AJ, Dreher MR, Das S, Hanna G, Park W, Chilkoti A, Koning GA, ten Hagen TL, Needham D, Dewhirst MW. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 2012, 72, 5566–5575. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392. Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, Idziaszczyk S, Harris R, Fisher D, Kenny SL, Kay E, Mitchell JK, Madi A, Jasani B, James MD, Bridgewater J, Kennedy MJ, Claes B, Lambrechts D, Kaplan R,Cheadle JP; MRC COIN Trial Investigators. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011, 377, 2103–2114. Milas L, Fan Z, Andratschke NH, Ang KK. Epidermal growth factor receptor and tumor response to radiation: in vivo preclinical studies. Int J Radiat Oncol Biol Phys. 2004, 58, 966–971. Miller MA, Meyer AS, Beste MT, Lasisi Z, Reddy S, Jeng KW, Chen CH, Han J, Isaacson K, Griffith LG, Lauffenburger DA. ADAM 10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc. Natl Acad. Sci. USA. 2013, 110, E2074-E2083. Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nature Rev. Cancer 2006, 6, 583–592. N. Oriuchi, T. Higuchi, H. Hanaoka, Y. Iida, and K. Endo. Current status of cancer therapy with radiolabeled monoclonal antibody. ANN NUCL MED. 2005, 19, 355–365. Neuchrist C, Erovic BM, Handisurya A, Fischer MB, Steiner GE, Hollemann D, Gedlicka C, Saaristo A, Burian M. Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 expression in squamous cell carcinomas of the head and neck. Head Neck. 2003, 25, 464–474. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D,Olin S, Monteiro-Riviere N, Warheit D, Yang H; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005, 2, 8–8. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002; 110:775–87. Ongkeko WM, Altuna X, Weisman RA, Wang-Rodriguez J. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol. 2005, 124, 71–76. Overall, C. M. & Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev. Cancer 2006, 6, 227–239. P. J. Hudson. Recombinant antibody constructs in cancer therapy. CURR OPIN IMMUNOL. 1999, 11, 548-557. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer. 2004, 4, 448–456. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, Lee S, Hadjipanayis AG, Ivanova EV,Wilkerson MD, Protopopov A, Yang L, Seth S, Song X, Tang J, Ren X, Zhang J, Pantazi A, Santoso N, Xu AW,Mahadeshwar H, Wheeler DA, Haddad RI, Jung J, Ojesina AI, Issaeva N, Yarbrough WG, Hayes DN, Grandis JR, El-Naggar AK, Meyerson M, Park PJ, Chin L, Seidman JG, Hammerman PS, Kucherlapati R; Cancer Genome Atlas Network. Characterization of HPV and host genome interactions in primary head and neck cancers'. Proc Natl Acad Sci. USA. 2014, 111, 15544–15549. Park EJ, Kim H, Kim Y, Park K. Effects of platinum nanoparticles on the postnatal development of mouse pups by maternal exposure. Environ Health Toxicol. 2010, 25, 279–286. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284–293. Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S. Cetuximab and panitumumab in KRAS wild-type colorectal cancer: a meta-analysis. Int J Colorectal Dis. 2011, 26, 823–833. Ruíz-Godoy R LM, Garcia-Cuellar CM, Herrera González NE, Suchil BL, Pérez-Cárdenas E, Sácnchez-Pérez Y,Suárez-Roa ML, Meneses A. Mutational analysis of K-ras and Ras protein expression in larynx squamous cell carcinoma. J Exp Clin Cancer Res. 2006, 25, 73–78. S.S. Sridhar, L. Seymour, F.A. Shepherd. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 2003, 4, 397–406. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007, 4, 10. Scott, D. W. & Gascoyne, R. D. The tumour microenvironment in B cell lymphomas. Nature Rev. Cancer 2014, 14, 517–534. Seufferlein T, Ahn J, Krndija D, Lother U, Adler G, von Wichert G. Tumor biology and cancer therapy — an evolving relationship. Cell Commun. Signal. 2009, 7, 7–19. Shin G, Kang TW, Yang S, Baek SJ, Jeong YS, Kim SY. GENT: gene expression database of normal and tumor tissues. Cancer Informat. 2011, 10, 149–157. Simons, K. & Fuller, S. D. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1985, 1, 243–288. Slichenmyer WJ, Fry DW. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin Oncol. 2001, 28, 67–79. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008, 60, 1226–1240. Soenen SJ, Manshian BB, Aubert T, Himmelreich U, Demeester J, De Smedt SC, Hens Z, Braeckmans K. Cytotoxicity of cadmiumfree quantum dots and their use for cell bioimaging. Chem Res Toxicol. 2014, 27, 1050–1059. T. Yokota, D. E. Milenic, M. Whitlow, and J. Schlom. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res.1992, 52, 3402–3408. Thomas SM, Grandis JR. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat Rev. 2004, 30, 255–268. Tsakiris P, De la Rosette J. Imaging in genitourinary cancer from the urologists’ perspective. Cancer Imaging. 2007, 7, 84–92. Tsuji, T., Yoshitomi, H. & Usukura, J. Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy. 2013, 62, 341–352. Tuyns AJ, Estève J, Raymond L, Berrino F, Benhamou E, Blanchet F, Boffetta P, Crosignani P, del Moral A, Lehmann W. Cancer of the larynx/hypopharynx, tobacco and alcohol: IARC international case-control study in Turin and Varese (Italy), Zaragoza and Navarra (Spain), Geneva (Switzerland) and Calvados (France). INT J CANCER. 1988, 41, 483–491. van Krieken JH, Jung A, Kirchner T, Carneiro F, Seruca R, Bosman FT, Quirke P, Fléjou JF, Plato Hansen T, de Hertogh G, Jares P, Langner C, Hoefler G, Ligtenberg M, Tiniakos D, Tejpar S, Bevilacqua G, Ensari A. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch. 2008, 453, 417–31. Vlashi, E., Kelderhouse, L. E., Sturgis, J. E. & Low, P. S. Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. ACS Nano. 2013, 7, 8573–8582. W.A. Messersmith, M. Hidalgo. Panitumumab, a monoclonal anti epidermal growth factor receptor antibody in colorectal cancer: another one or the one? Clin. Cancer Res. 2007, 13, 4664–4666. Wakeling AE, Barker AJ, Davies DH, Brown DS, Green LR, Cartlidge SA, Woodburn JR. Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res Treat. 1996, 38, 67–73. Wang, B., Galliford, C., & Low, P. S. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine. 2014, 9, 313–330. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT, Harari PM. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008, 27, 944–596. Widakowich C, de Castro G Jr, de Azambuja E, Dinh P, Awada A. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007, 12, 1443–1455. Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V, Gallo RM, Ades LM, Settleman J, Riese DJ 2nd. EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors. 2012, 30, 107–116. Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther. 1999, 82, 241–250. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001, 38, 17–23. Yang, J. J., Kularatne, S. A., Chen, X., Low, P. S. & Wang, E. Characterization of in vivo disulfide-reduction mediated drug release in mouse kidneys. Mol. Pharmaceut. 2011, 9, 310–317. Yarbrough WG, Shores C, Witsell DL, Weissler MC, Fidler ME, Gilmer TM. Ras mutations and expression in head and neck squamous cell carcinomas. Laryngoscope. 1994, 104, 1337–1347. Yoo, J. W., Chambers, E. & Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des. 2010, 16, 2298–2307. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. 1995, Cancer Res. 55, 3752–3756. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19068 | - |
| dc.description.abstract | 表皮生長因子受體 (EGFR)為erbB家族中的一員,在過去的文獻中發現其參與在數種癌症的發生與惡化。在30%上皮細胞癌中EGFR有突變、基因重複或是錯誤調節。因此研發專一性針對EGFR的標靶治療是具有前景的治療方式。本實驗室先前利用噬菌體顯示法 (phage display) 挑選出兩株能夠專一性結合表皮生長因子受體外域 (EGFR-Ex) 之人類單鍊免疫球蛋白變異區段 (scFv)。將標的表皮生長因子受體之人類單鍊免疫球蛋白變異區段與微脂體進行鍵結後,發現能提升微脂體與肝癌、肺癌以及頭頸部癌細胞株結合和內化。將此標的物與包裹藥物之微脂體進行鍵結後發現標的之微脂體與未標的之微脂體相比能更加有效毒殺癌細胞。接著以活體內腫瘤導向,發現能有效與腫瘤細胞結合。於治療異體移植頭頸部癌之免疫缺陷小鼠中,發現接上此標物物後能更加有效提升小鼠之存活。綜合上續之結果,發現標的表皮生長因子受體人類單鍊免疫球蛋白變異區段之微脂體藥物能更加有效提升藥物傳輸於治療頭頸部癌。 | zh_TW |
| dc.description.abstract | Epidermal growth factor receptor, a member of the ErbB family, has been reported to involve in pathogenesis and progression in a plethora of cancer types. Genetic aberration of EGFR such as activating mutation and amplification are implicated in about 30% of all epithelial cancers including head and neck squamous cell carcinoma (HNSCC). Therefore, it is rational and promising to develop a targeted regimen toward this receptor. Previous work of our laboratory acquired two novel scFvs that could specifically bind to EGFR extracellular domains (EGFR-Ex) through phage display technique. Conjugation of these two scFvs to liposome enhanced binding and internalization ability compared to non-targeting counterpart in cell lines of liver, lung and head and neck cancer cells. Furthermore, EGFR scFv-conjugated liposomal doxorubicin or vinorelbine could augment their cytotoxic effects on cancer cells. The specificity and binding ability of EGFR scFv were also verified through in vivo homing assay. In the FaDu-derived subcutaneous xenograft model, EGFR scFv-conjugated liposomal drugs reduced the tumor burden more efficiently and increased the survival rates than non-targeting liposomal drugs. Taken together, these results reveal the potential benefit of EGFR-specific scFv in respect of therapeutic enhancement of targeted drug delivery in the treatment of head and neck cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:43:59Z (GMT). No. of bitstreams: 1 ntu-105-R03450011-1.pdf: 3944515 bytes, checksum: 28f9a84c8b3bcae25b298f483be68e02 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 3
Abstract 4 Contents 6 Content of figures and tables 8 List of abbreviations 9 Introduction 11 1.1 Epidemiology and pathogenesis of head and neck cancer 11 1.2 Detection and diagnosis of head and neck cancer 14 1.3 Treatment of head and neck cancer 14 1.4 Epidermal growth factor receptor (EGFR) 17 1.5 EGFR signaling pathway in cancer 18 1.6 Anti-EGFR targeted therapy 19 1.7 Resistance to anti-EGFR therapy 22 1.8 Nanoparticles drug delivery system 24 1.9 Targeted imaging system 25 1.10 Single chain variable fragment (scFv) 27 Material and Methods 30 2.1 Cell lines and culture condition 30 2.2 Protein extraction and Western blot analysis 30 2.3 Expression and purification of soluble scFv 31 2.4 Internalization assay of scFv 32 2.5 Preparation of EGFR scFv-conjugated liposomes containing SRB, doxorubicin or vinorelbine 33 2.6 Characterization of lipid nanoparticles 35 2.7 Internalization ability of liposome conjugates EGFR scFv 35 2.8 Cell viability assay 35 2.9 Enzyme-linked immunosorbent assay (ELISA) 36 2.10 In vivo homing experiments and tissue distribution of phages 37 2.11 Immunohistochemical staining of phage binding to tumor mass of xenograft 37 2.12 RNA extraction, quantitative reverse transcription polymerase chain reaction (qRT-PCR) 38 2.13 In vivo xenograft model for targeted therapeutic efficacy 39 2.14 Conjugation of scFv to quantum dots (QD) 39 2.15 Flow cytometric analysis 40 2.18 Statistical analysis 40 Results 42 3.1 Identification of endogenous EGFR expression in human cancer cell lines. 42 3.2 Expression and purification of anti-EGFR scFv. 42 3.3 Elevated binding and internalization ability of EGFR-s7 and EGFR-s10 scFv. 43 3.4 Enhancement of liposomal SRB binding and internalization ability by EGFR-s7 and EGFR-s10. 43 3.5 Production and characterization of EGFR-targeted scFv-conjugated liposomal drugs. 44 3.6 Enhancement of liposomal drug intracellular delivery and cytotoxicity in vitro by EGFR-s7 and EGFR-s10. 45 3.7 In vivo validation of tumor-homing ability of EGFR-targeted phage clones. 46 3.8 Therapeutic potential of combination therapy in HNSCC xenograft model. 47 3.9 In vitro validation of tumor-homing ability of EGFR-targeted phage clones. 47 Discussion 49 Table 53 References 70 | |
| dc.language.iso | en | |
| dc.subject | 藥物傳輸系統 | zh_TW |
| dc.subject | 單鍊免疫球蛋白變異區段 | zh_TW |
| dc.subject | 表皮生長因子受體 | zh_TW |
| dc.subject | 頭頸部癌 | zh_TW |
| dc.subject | EGFR | en |
| dc.subject | drug delivery systems | en |
| dc.subject | scFv | en |
| dc.subject | head and neck cancer | en |
| dc.title | 發展抗表皮生長因子受體人類單鍊抗體結合藥物傳輸系統於頭頸部鱗狀細胞癌之標靶治療 | zh_TW |
| dc.title | Development of Anti-EGFR scFv-mediated Drug Delivery Systems for Targeted Therapy of Head and Neck Squamous Cell Carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王逸平,蕭培文,李文山 | |
| dc.subject.keyword | 頭頸部癌,表皮生長因子受體,單鍊免疫球蛋白變異區段,藥物傳輸系統, | zh_TW |
| dc.subject.keyword | head and neck cancer,EGFR,scFv,drug delivery systems, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201602146 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
