Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19043
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩(Chao-Ying Chen)
dc.contributor.authorYi-Jen Wangen
dc.contributor.author王苡任zh_TW
dc.date.accessioned2021-06-08T01:43:12Z-
dc.date.copyright2020-09-17
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation金石文、許圳塗。1993。百合栽培品種之來源及栽培要點。高雄區農業專訊 6: 14-17。
曾敏南、陳昱初。2014。應用農桿菌(Agrobacterium tumefaciens)做為絲狀真菌基因轉殖工具。高雄區農業改良場研究彙報 24: 10-22。
童伯開。2001。灰黴病。植物保護圖鑑系列 5: 16-21。
賴奕如。2019。百合防禦蛋白LsGRP1抗灰黴病之關鍵區段探討。國立台灣大學植物病理與微生物學系碩士論文。臺北。
謝廷芳、黃振文。1998。百合灰黴病之發展條件與病勢進展。植物保護學會會刊 40: 227-240。
Bacete, L., Melida, H., Miedes, E. and Molina, A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93: 614-636.
Birnboim H. C. and Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
Boccara, M. and Chatain, V. 1989. Regulation and role in pathogenicity of Erwinia chrysanthemi 3937 pectin methylesterase. J. Bacteriol. 171: 4085-4087.
Caribé dos Santos, A. C., Sena, J. A. L., Santos, S. C., Dias, C. V., Pirovani, C. P., Pungartnik, C., Valle, R. R., Cascardo, J. C. M. and Vincentz, M. 2009. dsRNA-induced gene silencing in Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao. Fungal Genet. Biol. 46: 825-836.
Carthew, R. W. and Sontheimer, E. J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642-655.
Chen, M., Sheng, J., Hind, G., Handa, A. K. and Citovsky, V. 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19: 913-920.
Chia-Hua and Chao-Ying Chen. 2014. Characterization of the dual subcellular localization of Lilium LsGRP1, a plant class II glycine-rich protein. Phytopathology 104: 1012-1120.
Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J., Simon, A. and Viaud, M. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 277: 1-10.
Cohen, A. and Meredith, C. P. 1992. Agrobacterium-mediated transformation of Lilium. Acta Hortic. 325: 611-618.
Cuccato, G., Polynikis, A., Siciliano, V., Graziano, M., Di Bernardo, M. and Di Bernardo, D. 2011. Modeling RNA interference in mammalian cells. BMC Syst. Biol. 5: 19.
Cui, Z., Ding, Z., Yang, X., Wang, K. and Zhu, T. 2009. Gene disruption and characterization of a class V chitin synthase in Botrytis cinerea. Can. J. Microbiol. 55: 1267-1274.
Cui, Z., Wang, Y., Lei, N., Wang, K. and Zhu, T. 2013. Botrytis cinerea chitin synthase BcChsVI is required for normal growth and pathogenicity. Curr. Genet. 59: 119-128.
DafaAlla, T. E. I. M., Abdalla, M., Algaili, N., Elhaj, E., Eldigair, E., Eltayb, W. A., Li, G. and Qin, Q. 2017. Identification of new pathogenicity related to the gene encoding hypothetical protein in the gray mold fungus (Botrytis cinerea). Aust. J. Crop Sci. 11: 1236-1243.
Dang, Y., Yang, Q., Xue, Z. and Liu, Y. 2011. RNA interference in fungi: Pathways, functions, and applications. Eukaryot. Cell 10: 1148-1155.
Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A. and Yurin, V. 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 5: 1259-1270.
Ding, Z., Zhang, Z., Luo, D., Zhou, J., Zhong, J., Yang, J., Xiao, L., Shu, D. and Tan, H. 2015. Gene overexpression and RNA silencing tools for the genetic manipulation of the S-(+)-abscisic acid producing ascomycete Botrytis cinerea. Int. J. Mol. Sci. 16: 10301-10323.
Dorokhov, Y. L., Frolova, O. Y., Skurat, E. V., Ivanov, P. A., Gasanova, T. V., Sheveleva, A. A., Ravin, N. V., Mäkinen, K. M., Klimyuk, V. I., Skryabin, K. G., Gleba, Y. Y. and Atabekov, J. G. 2006. A novel function for a ubiquitous plant enzyme pectin methylesterase: The enhancer of RNA silencing. FEBS Lett. 580: 3872-3878.
Downie, B., Dirk, L. M., Hadfield, K. A., Wilkins, T. A., Bennett, A. B. and Bradford, K. J. 1998. A gel diffusion assay for quantification of pectin methylesterase activity. Anal. Biochem. 264: 149-157.
Erental A., Harel, A. and Yarden O. 2007. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol. Plant Microbe Interact. 20: 944-954.
Espino, J., González, M., González, C. and Brito, N. 2014. Efficiency of different strategies for gene silencing in Botrytis cinerea. Appl. Microbiol. Biotechnol. 98: 9413-9424.
Fan, H., Dong, H., Xu, C., Liu, J., Hu, B., Ye, J., Mai, G. and Li, H. 2017. Pectin methylesterases contribute the pathogenic differences between races 1 and 4 of Fusarium oxysporum f. sp. cubense. Sci. Rep. 7: 13140.
Frías, M., González, M., González, C. and Brito, N. 2016. BcIEB1, a Botrytis cinerea secreted protein, elicits a defense response in plants. Plant Sci. 250: 115-124.
Gao, X., Cui, Q., Cao, Q., Zhao, Y., Liu, Q., He, H., Jia, G. and Zhang, D. 2018. Evaluation of resistance to Botrytis elliptica in Lilium hybrid cultivars. Plant Physiol. Biochem. 123: 392-399.
García, N., González, M. A., González, C. and Brito, N. 2017. Simultaneous silencing of xylanase genes in Botrytis cinerea. Front. Plant Sci. 8:2174. doi: 10.3389/fpls.2017.02174.
Gasanova, T. V., Skurat, E. V., Frolova, O. Yu., Semashko, M. A. and Dorokhov, Y. L. 2008. Pectin methylesterase as a factor of plant transcriptome stability. Mol. Biol. 42: 421-429.
Giesbert, S., Schumacher, J., Kupas, V., Espino, J., Segmüller, N., Haeuser-Hahn, I., Schreier, P. H. and Tudzynski, P. 2012. Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: A type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. Mol. Plant Microbe Interact. 25: 481-495.
Gigli‐Bisceglia, N., Engelsdorf, T. and Hamann, T. 2019. Plant cell wall integrity maintenance in model plants and crop species‐relevant cell wall components and underlying guiding principles. Cell Mol. Life Sci. doi: 10.1007/s00018-019-03388-8.
Gijzen, M. and Nürnberger, T. 2006. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67: 1800-1807.
González, M., Brito, N. and González, C. 2017. The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity. New Phytol. 215: 397-410.
Hannon, G. J. 2002. RNA interference. Nature 418: 244-251.
Hasunuma, T., Fukusaki, E. and Kobayashi, A. 2004. Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype. J. Biotechnol. 111: 241-251.
Hsiao, Y. M., Liu, Y. F., Huang, Y. L. and Lee, P. Y. 2011. Transcriptional analysis of pmeA gene encoding a pectin methylesterase in Xanthomonas campestris pv. campestris. Res. Microbiol. 162: 270-278.
Hsieh, T. F., Huang, J. W. and Hsiang, T. 2001. Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. Eur. J. Plant Pathol. 107: 571-581.
Hwang, H., Yu, M. and Lai, E. 2017. Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 15.
Jarvis, M. C., Forsyth, W. and Duncan, H. J. 1988. A survey of the pectic content of nonlignified monocot cell walls. Plant Physiol. 88: 309-314.
Jiang, X., Jia, Q., Chen, L., Chen, Q. and Yang, Q. 2014. Recombinant expression and inhibition mechanism analysis of pectin methylesterase from Aspergillus flavus. FEMS Microbiol. Lett. 355: 12-19.
Jolie, R. P., Duvetter, T., van Loey, A. M. and Hendrickx, M. E. 2010. Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr. Res. 345: 2583-2595.
Jones, A. M. 2001. Programmed cell death in development and defense. Plant Physiol. 125: 94-97.
Kabbage, M., Kessens, R., Bartholomay, L. C. and Williams, B. 2017. The life and death of a plant cell. Annu. Rev. Plant Biol. 68: 375-404.
Kars, I., Krooshof, G. H., Wagemakers, L., Joosten, R., Benen, J. A. E. and van Kan, J. A. L. 2005. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43: 213-225.
Kars, I., McCalman, M., Wagemakers, L. and van Kan J. A. L. 2005. Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR‐based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol. Plant Pathol. 6: 641-652.
Ketting, R. F. 2011. The many faces of RNAi. Dev. Cell 20:148-161.
Kim, H., Chen, C., Kabbage, M. and Dickman, M. B. 2011. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl. Environ. Microbiol. 77: 7721-7729.
Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J., Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T. and Kogel, K. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 12: e1005901.
Koch, A., Stein, E. and Kogel, K. 2018. RNA-based disease control as a complementary measure to fight Fusarium fungi through silencing of the azole target Cytochrome P450 Lanosterol C-14 α-Demethylase. Eur. J. Plant Pathol. 152: 1003-1010.
Kohli, P., Kalia, M. and Gupta, R. 2015. Pectin methylesterases: A review. J. Bioprocess Biotech. 5: 227.
Kohorn, B. D., Kohorn, S. L., Saba, N. J. and Martinez, V. M. 2014. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. J. Biol. Chem. 289: 18978-18986.
Kumar, S., Stecher, G. and Tamura, K. 2015. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
Laing, W. and Christeller, J. 2004. Extraction of protein from plant tissues. Curr. Protoc. Protein Sci. 4.7.1-4.7.7.
Lampugnani, E. R., Khan, G. A., Somssich, M. and Persson, S. 2018. Building a plant cell wall at a glance. J Cell Sci. 131.
Leroch, M., Kleber, A., Silva. E., Coenen, T., Koppenhöfer, D., Shmaryahu, A., Valenzuela, P. D. T. and Hahn, M. 2013. Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Eukaryotic Cell 12: 614-626.
Li, D., Tang, Y., Lin, J. and Cai, W. 2017. Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 16: 168.
Li, P., Feng, B., Wang, H., Tooley, P. W. and Zhang, X. 2011. Isolation of nine Phytophthora capsici pectin methylesterase genes which are differentially expressed in various plant species. J. Basic Microbiol. 51: 61-10.
Limberg, G., Körner, R., Buchholt, H. C., Christensen, T. M. I. E., Roepstorff, P. and Mikkelsen, J. D. 2000. Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. Niger. Carbohydr. Res. 327: 293-307.
Lionetti, V., Cervone, F. and Bellincampi, D. 2012. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. J. Plant Physiol. 169: 1623-1630.
Lõoke, M., Kristjuhan, K. and Kristjuhan, A. 2011. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques. 50: 325-328.
Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M. and Wang, Y. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27: 2057-2072.
Markovič, O. and Janeček, Š. 2004. Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr. Res. 339: 2281-2295.
Mascia, T., Nigro, F., Abdallah, A., Ferrara, M., De Stradis, A., Faedda, R., Palukaitis, P. and Gallitelli, D. 2014. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector. Proc. Natl. Acad. Sci. U.S.A. 111: 4291-4296.
McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., De Kievit, T., Fernando, W. G. D., Whyard, S. and Belmonte, M. F. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci. Rep. 8: 7320.
Meister, G. and Tuschl, T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343-349.
Micheli, F. 2001. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 6: 414-419.
Movahedi, S. and Heale, J. B. 1990. The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex.Pers. Physiol. Mol. Plant Pathol. 36: 303-324.
Müller, N., Leroch, M., Schumacher, J., Zimmer, D., Könnel, A., Klug, K., Leisen, T., Scheuring, D., Sommer, F., Mühlhaus, T., Schroda, M. and Hahn, M. 2018. Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of Botrytis cinerea. New Phytol. 219: 1062-1074.
Nakajima, M. and Akutsu, K. 2014. Virulence factors of Botrytis cinerea. J. Gen. Plant Pathol. 80: 15-23.
Nakayashiki, H., Hanada, S., Quoc, N. B., Kadotani, N., Tosa, Y. and Mayama, S. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet. Biol. 42: 275-283.
Nora, L. C., Gonçales, R. A., Martins-Santana, L., Ferreira, B. H., Rodrigues, F. and Silva-Rocha, R. 2019. Synthetic and minimalist vectors for Agrobacterium tumefaciens-mediated transformation of fungi. Genet. Mol. Biol. 42: 395-398.
Ogaki, M., Furuichi, Y., Kuroda, K., Chin, D. P., Ogawa, Y. and Mii, M. 2008. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium x formolongi. Plant Cell Rep. 27: 699-705.
Olvera-Carrillo, Y., van Bel, M., van Hautegem, T., Fendrych, M., Huysmans, M., Simaskova, M., van Durme, M., Buscaill, P., Rivas, S., Coll, N. S., Coppens, F., Maere, S. and Nowack, M. K. 2015. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 169: 2684-2699.
Patel, R. M., van Kan, J. A. L., Bailey, A. M. and Foster, G. D. 2008. RNA-mediated gene silencing of superoxide dismutase (bcsod1) in Botrytis cinerea. Phytopathology 98: 1334-1339.
Pelloux, J., Rustérucci, C. and Mellerowicz, E. J. 2007. New insights into pectin methylesterase structure and function. Trends Plant Sci. 12: 267-277.
Raiola, A., Lionetti, V., Elmaghraby, I., Immerzeel, P., Mellerowicz, E. J., Salvi, G., Cervone, F. and Bellincampi, D. 2011. Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic Pathogens. Mol. Plant Microbe Interact. 24: 432-440.
Reignault, P., Mercier, M., Bompeix, G. and Boccara, M. 1994. Pectin methylesterase from Botrytis cinerea: physiological, biochemical and immunochemical studies. Microbiology 140: 3249-3255.
Ridley, B. L., O’Neill, M. A. and Mohnen, D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967.
Rolland, S., Jobic, C., Fèvre, M. and Bruel, C. 2003. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr. Genet. 44: 164-171.
Schumacher, J. 2012. Tools for Botrytis cinerea: New expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet. Biol. 49: 483-497.
Sella, L., Castiglioni, C., Paccanaro, M. C., Janni, M., Schäfer, W., D’Ovidio, R. and Favaron, F. 2016. Involvement of fungal pectin methylesterase activity in the interaction between Fusarium graminearum and wheat. Mol. Plant Microbe Interact. 29: 258-267.
Sénéchal, F., Wattier, C., Rustérucci, C. and Pelloux, J. 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 65: 5125-5160.
Shao, W., Zhang, Y., Wang, J., Lv, C. and Chen, C. 2016. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Sci. Rep. 6: 28673.
Song, X., Gu, K., Duan, X., Xiao, X., Hou, Y., Duan, Y., Wang, J., Yu, N. and Zhou, M. 2018. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Mol. Plant Pathol. 19: 2543-2560.
Staats, M., van Baarlen, P., Schouten, A. and van Kan, J. A. L. 2007. Functional analysis of NLP genes from Botrytis elliptica. Mol. Plant Pathol. 8: 209-214.
Staats, M., van Barrlen, P. and van Kan, J. A. L. 2005. Molecular phylogeny of the plant pathogenic genus botrytis and the evolution of host specificity. Mol. Biol. Evol. 22: 333-346.
Tans-Kersten, J., Guan, Y. and Allen, C. 1998. Ralstonia solanacearum pectin methylesterase is required for growth on methylated Pectin but not for bacterial wilt virulence. Appl. Environ. Microbiol. 64: 4918-4923.
Tayal, P., Raj, S., Sharma, E., Kumar, M., Dayaman, V., Verma, N., Jogawat, A., Dua, M., Kapoor, R. and Johri, A. K. 2017. A Botrytis cinerea KLP-7 kinesin acts as a virulence determinant during plant infection. Sci Rep. 7: 10664.
Tayi, L., Maku, R. V., Patel, H. K. and Sonti, R. V. 2016. Identification of pectin degrading enzymes secreted by Xanthomonas oryzae pv. oryzae and determination of their role in virulence on rice. PLoS ONE 11: e0166396.
Valette-Collet, O., Cimerman, A., Reignault, P., Levis, C. and Boccara, M. 2003. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol. Plant Microbe Interact. 16: 360-367.
van Baarlen, P., Staats, M. and van Kan, J. A. 2004. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol. Plant Pathol. 5: 559-574.
van Doorn, W. G., Beers, E. P., Dangl, J. L., Franklin-Tong, V. E., Gallois, P., Hara-Nishimura, I., Jones, A. M., Kawai-Yamada, M., Lam, E., Mundy, J., Mur, L. A. J., Petersen, M., Smertenko, A., Taliansky, M., van Breusegem, F., Wolpert, T., Woltering, E., Zhivotovsky, B. and Bozhkov, P. V. 2011. Morphological classification of plant cell deaths. Cell Death Differ. 18: 1241-1246.
van Kan, J. A. L. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11: 1360-1385.
Veloso, J. and van Kan, J. A. L. 2018. Many shades of grey in Botrytis-host plant interactions. Trends Plant Sci. 23: 613-622.
Viaud, M., Brunet-Simon, A., Brygoo, Y., Pradier, J. and Levis, C. 2003. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol. Microbiol. 50: 1451-1465.
Weiberg, A., Wang, M., Lin, F., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H. and Jin, H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Sci. 342: 118-123.
Yapo, B. M. 2011. Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym. Rev. 51: 391-413.
Zhu, W., Ronen, M., Gur, Y., Minz-Dub, A., Masrati, G., Ben-Tal, N., Savidor, A., Sharon, I., Eizner, E., Valerius, O., Braus, G. H., Bowler, K., Bar-Peled, M. and Sharon, A. 2017. BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiol. 175: 438-456.
Zhu, W., Wei, W., Fu, Y., Cheng, J., Xie, J., Li, G., Yi, X., Kang, Z., Dickman, M. B. and Jiang, D. 2013. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE 8: e53901.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19043-
dc.description.abstract百合灰黴病是百合重要病害之一,主要由Botrytis elliptica造成,可發生於全株地上部,產生黃褐色壞疽病斑,影響光合作用及花器觀賞價值,目前仍不清楚B. elliptica的致病因子。前人研究指出B. elliptica在孢子萌芽時會產生酯酶,並且分泌蛋白,造成百合細胞死亡;本研究以真菌外泌性蛋白為研究對象,期了解B. elliptica毒力因子及其於灰黴病菌致病過程中之角色。本研究發現相較於僅除去菌體之B. elliptica培養液及經聚偏氟乙烯膜(polyvinylidene difluoride)過濾之濾液,混合纖維膜(mixed cellulose ester)之濾液明顯減少對百合細胞的致死能力。以質譜分析差異性蛋白質條帶,找到與灰黴病菌B. cinerea之BcPME1序列高度相似的外泌蛋白(BePME1),預測其帶有一訊息胜肽及果膠甲基酯酶酵素活性區段。百合灰黴病菌感染72小時內,在中度抗病性百合‘Star Gazer’上,接種B. elliptica後24小時,bepme1表現量上升,並在接種後60小時有最高相對表現量;在高度感受性百合‘Tresor’上,接種B. elliptica後12小時,表現量上升並隨即下降,接種後36小時後的表現量再度上升,並在接種後48小時達到最高相對表現量,指出BePME1參與B. elliptica與寄主的早期交互作用以及B. elliptica感染後的病徵擴展。以dsRNA進行bepme1基因靜默,反轉錄-即時定量聚合酶連鎖反應偵測較少的bepme1表現,百合灰黴病菌感染導致的病斑擴展速率較慢,並且延遲植體上的菌體增加量;以高濃度菌量接種感病寄主時,bepme1基因靜默則不會影響灰黴病病徵發展。以Pichia pastoris生產移除訊息胜肽的BePME1 (BePME1ΔS)未能檢測出具果膠甲基酯酶活性;然將BePME1ΔS導入百合葉盤,則可使百合細胞內離子外漏,以Evans blue染色後亦可檢測出死亡的百合細胞。將B. elliptica接種於處理1 µM BePME1ΔS或以農桿菌浸潤法短暫表現bepme1之百合葉盤,均可造成較大的病斑。本研究結果指出BePME1可做為毒力因子,引起百合細胞死亡,有助於B. elliptica侵染寄主後的病徵發展。zh_TW
dc.description.abstractGray mold disease, caused by Botrytis elliptica, as one of the severe diseases on lily causes brown necrotic spots on above-ground part of the plant, influencing photosynthesis and reducing flower value. It is still unclear what virulence facters B. elliptica owns. As known, B. elliptica produces esterase while spores germinate and secretes protein(s) which inducing lily cell death. This study targeted the secreted proteins and aimed to figure out the role of B. elliptica virulence factor during the infection of lily. Firstly, the lily cell-lethal ability of the culture filtrate of B. elliptica further filtrated through polyvinylidene difluoride membrane and mixed cellulose ester membrane were compared and showed that the former had higher lethal effect. Selected protein bands were analyzed by LC-MS/MS. Among them, a secreted protein, named BePME1, was found highly similar to BcPME1 of B. cinerea, which was predicted presence of a signal peptide and a pectin methylesterase catalytic domain. RT-qPCR detected higher bepme1 expression in medium resistant lily ‘Star Gazer’ at 24 hours post inoculation (hpi) and attained highest relative expression level at 60 hpi while in highly susceptible lily ‘Tresor’, an increase of bepme1 expression was showed at 12 hpi, then dropped the expression and rose later at 36 hpi, getting the highest relative expression level at 48 hpi, implying BePME1 is involved in the early interaction between B. elliptica and lily, and symptom development. Bepme1 silencing via dsRNA-mediated interference showed reduced symptom development and delayed the increase of fungal mass in planta, indicating bepme1 affects the host infection of B. elliptica. However, symptom development was not affected as challenge with fungal inoculum of high spore concentration on susceptible lily cultivar. Signal peptide-deleted BePME1 (BePME1ΔS) produced in Pichia pastoris system did not show pectin methylesterase activity. However, infiltrating BePME1ΔS into lily leaf discs caused electrolyte leakage and plant cell death as detected by Evans blue staining. Lesions caused by B. elliptica infection on lily leaf discs infiltrated with BePME1ΔS and lily leaves post Agrobacterium-mediated bepme1 transient expression appeared larger. These results indicate that BePME1 is a virulence factor, causing lily cell death and facilitating symptom development caused by B. elliptica.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:43:12Z (GMT). No. of bitstreams: 1
U0001-1708202020540500.pdf: 3046695 bytes, checksum: e304b15e9db064850d6258fc5534c2c6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 1
英文摘要 2
壹、 前言 7
貳、 前人研究 8
一、百合與百合灰黴病 8
二、百合灰黴病菌 8
三、死體營養型植物病原菌及其毒力因子 9
四、程序性細胞死亡 11
五、果膠與果膠甲基酯酶 12
六、基因靜默 14
七、農桿菌介導的植物表現外源基因 15
參、 材料與方法 17
一、供試植物的栽培 17
二、百合灰黴病菌的培養與保存 17
三、細菌載體的製備與保存 17
四、真菌外泌性物質的分離與其對百合致死功能的分析 19
五、真菌外泌性蛋白質的分離與鑑定 20
六、選殖 B. elliptica pectin methylesterase 基因 22
七、以大腸桿菌表現 BePME1ΔS 22
八、以酵母菌表現 BePME1 和 BePME1ΔS 23
九、蛋白質的純化與定量 25
十、分析表現 bepme1 對百合的灰黴病抗性的影響 26
十一、Bepme1 基因的表現特性分析 27
十二、分析靜默 bepme1 基因對灰黴病菌致病性的影響 28
十三、檢測百合體內的 B. elliptica 生物量 29
十四、重組蛋白 BePME1ΔS 的活性與植體功能檢測 30
十五、BePME1 與其他 PME 的親緣分析 31
十六、統計方法 31
肆、 結果 32
一、B. elliptica 外泌性蛋白收集與百合細胞致死能力測定 32
二、以串聯式質譜儀分析 B. elliptica 外泌性蛋白 32
三、Bepme1 核酸與胺基酸序列分析 33
四、BePME1 與相似 PME 的演化關係 34
五、百合灰黴病菌在感染百合時的 bepme1 表現曲線 35
六、Bepme1 基因靜默造成灰黴病病程發展延遲 35
七、果膠誘導 bepme1 基因表現 36
八、以 E. coli 及 P. pastoris 系統表現 BePME1ΔS 重組蛋白 37
九、BePME1ΔS 重組蛋白導致百合細胞死亡並促進灰黴病發展 37
十、農桿菌介導百合表現 bepme1 促進灰黴病發展 38
伍、 討論 39
陸、 參考文獻 43
柒、 圖表集 53
表一、本研究使用之引子對。54
表二、目標蛋白的液相層析串聯式質譜與 Proteome Discoverer 分析結果。57
圖一、B. elliptica 外泌物質造成百合葉部細胞內離子滲漏。65
圖二、以膠體電泳分離 B. elliptica 的外泌蛋白。66
圖三、Bepme1 序列及蛋白質功能性區段預測。67
圖四、將 B. elliptica B061 之 BePME1 與相似 PME 進行多重序列比對。69
圖五、以 Maximum Likelihood 法建構的 B. elliptica B061 BePME1 與其他 PME 之親緣演化樹。70
圖六、B. elliptica B061 bepme1 與相似序列 g2029.t1 的核酸序列比對。72
圖七、B. elliptica 接種於‘Star Gazer’的 bepme1 表現圖譜。73
圖八、B. elliptica 接種於‘Tresor’的 bepme1 表現圖譜。74
圖九、Bepme1 酵素活性區段的 dsRNA 處理孢子後,大幅減緩 B. elliptica 在 ‘Star Gazer’上的病徵發展。75
圖十、經 dsRNA 處理之 B. elliptica 接種於‘Star Gazer’後的病徵發展。 76
圖十一、以顯微鏡觀察經 dsRNA 處理之 B. elliptica 感染‘Star Gazer’的 trypan blue 染色結果。77
圖十二、經 dsRNA 處理的 B. elliptica 接種於‘Star Gazer’的 bepme1 表現量圖 譜。78
圖十三、dsRNA 處理之 B. elliptica 接種於‘Tresor’後的病徵發展。79
圖十四、dsRNA 處理之 B. elliptica 接種於‘Tresor’後的病徵發展。80
圖十五、B. elliptica 在含有 0.5% pectin 的 GB 培養液中快速表現 bepme1。81
圖十六、大腸桿菌 E. coli BL21 (DE3)和 C41 (DE3)之 BePME1ΔS 表現載體示意圖。82
圖十七、嗜甲醇酵母菌 P. pastoris X-33 BePME1ΔS 表現載體示意圖。83
圖十八、以西方墨點法偵測 P. pastoris 表現 BePME1 和 BePME1ΔS 的胞內可溶性產物累積圖譜。84
圖十九、BePME1ΔS 在果膠培養基上未被檢測出其果膠甲基酯酶活性。85
圖二十、BePME1ΔS 造成百合葉片細胞離子滲漏。86
圖二十一、BePME1ΔS 具有百合細胞致死能力。87
圖二十二、以 BePME1ΔS 預處理百合會促進灰黴菌感染。88
圖二十三、農桿菌介導百合表現 bepme1 之載體示意圖。 89
圖二十四、以農桿菌浸潤法使百合表現 bepme1,促進灰黴病菌感染。90
捌、 附錄 91
建構百合灰黴病菌的農桿菌介導轉形平台 92
附錄表一、構築載體使用之引子對。94
附錄圖一、農桿菌介導 B. elliptica eGFP 過量表現菌株載體示意圖。95
附錄圖二、以農桿菌介導轉形構築 B. elliptica eGFP 過量表現菌株。96
dc.language.isozh-TW
dc.title果膠甲基酯酶 BePME1 在百合灰黴病菌感染過程扮演的角色zh_TW
dc.titleThe role of pectin methyl esterase BePME1 in the infection process of Botrytis ellipticaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強(Wei-Chiang Shen),葉信宏(Hsin-Hung Yeh),李敏惠(Miin-Huey Lee),黃健瑞(Chien-Jui Huang)
dc.subject.keywordBotrytis elliptica,果膠甲基酯酶,毒力因子,基因靜默,農桿菌介導轉形,百合細胞死亡,zh_TW
dc.subject.keywordBotrytis elliptica,pectin methylesterase,virulence factor,gene silencing,Agrobacterium-mediated transformation,lily cell death,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202003861
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1708202020540500.pdf
  目前未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved