請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19024完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾賢忠(Shiang-Jong Tzeng) | |
| dc.contributor.author | Yu-Syuan You | en |
| dc.contributor.author | 游雨璇 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:42:39Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | Banerjee A,Sindhava V,Vuyyuru R,Jha V,Hodewadekar S,Manser T,Atchison ML. YY1 Is Required for Germinal Center B Cell Development. Plos One. 2016, 11(5): e0155311.
Barber DL,Wherry EJ,Masopust D,Zhu BG,Allison JP,Sharpe AH,Freeman GJ,Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006, 439(7077): 682-687. Barford D,Das AK,Egloff MP. The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu Rev Bioph Biom. 1998, 27:133-164. Bengsch B,Seigel B,Ruhl M,Timm J,Kuntz M,Blum HE,Pircher H,Thimme R. Coexpression of PD-1, 2B4, CD160 and KLRG1 on Exhausted HCV-Specific CD8+T Cells Is Linked to Antigen Recognition and T Cell Differentiation. Plos Pathog. 2010, 6(6): e1000947. Blackburn SD,Shin H,Haining WN,Zou T,Workman CJ,Polley A,Betts MR,Freeman GJ,Vignali DAA,Wherry EJ. Coregulation of CD8(+) T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009, 10(1): 29-37. Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc gamma RIIB-deficient mice results from strain-specific epistasis. Immunity. 2000, 13(2): 277-285. Boni C,Fisicaro P,Valdatta C,Amadei B,Di Vincenzo P,Giuberti T,Laccabue D,Zerbini A,Cavalli A,Missale G,Bertoletti A,Ferrari C. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007, 81(8): 4215-4225. Butler NS,Moebius J,Pewe LL,Traore B,Doumbo OK,Tygrett LT,Waldschmidt TJ,Crompton PD,Harty JT. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol. 2012, 13(2): 188-195. Callendret B, Walker C. A siege of hepatitis Immune boost for viral hepatitis. Nat Med. 2011, 17(3): 252-253. Cao SJ,Zhang X,Edwards JP,Mosser DM. NF-kappa B1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem. 2006, 281(36): 26041-26050. Chen SH,Wu HL,Kao JH,Hwang LH. Persistent Hepatitis B Viral Replication in a FVB/N Mouse Model: Impact of Host and Viral Factors. Plos One. 2012, 7(5): e36984. Chew J,Biswas S,Shreeram S,Humaidi M,Wong ET,Dhillion MK,Teo H,Hazra A,Fang CC,Lopez-Collazo E,Bulavin DV,Tergaonkar V. WIP1 phosphatase is a negative regulator of NF-kappa B signalling. Nat Cell Biol. 2009, 11(5): 659-66. Chinai JM,Janakiram M,Chen FX,Chen WT,Kaplan M,Zang XX. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci. 2015, 36(9): 587-595. Choi J,Nannenga B,Demidov ON,Bulavin DV,Cooney A,Brayton C,Zhang YX,Mbawuike IN,Bradley A,Appella E,Donehower LA. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol. 2002, 22(4): 1094-1105. Collins MH, Henderson AJ. Transcriptional regulation and T cell exhaustion. Curr Opin Hiv Aids. 2014, 9(5): 459-463. Crawford A,Angelosanto JM,Kao C,Doering TA,Odorizzi PM,Barnett BE,Wherry EJ. Molecular and Transcriptional Basis of CD4(+) T Cell Dysfunction during Chronic Infection. Immunity. 2014, 40(2): 289-302. Das A,Ellis G,Pallant C,Lopes AR,Khanna P,Peppa D,Chen A,Blair P,Dusheiko G,Gill U,Kennedy PT,Brunetto M,Lampertico P,Mauri C,Maini MK. IL-10-Producing Regulatory B Cells in the Pathogenesis of Chronic Hepatitis B Virus Infection. J Immunol. 2012, 189(8): 3925-3935. Day CL,Kaufmann DE,Kiepiela P,Brown JA,Moodley ES,Reddy S,Mackey EW,Miller JD,Leslie AJ,DePierres C,Mncube Z,Duraiswamy J,Zhu BG,Eichbaum Q,Altfeld M,Wherry EJ,Coovadia HM,Goulder PJR,Klenerman P,Ahmed R,Freeman GJ,Walker BD. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006, 443(7109): 350-354. Duan XZ,Zhuang H,Wang M,Li HW,Liu JC,Wang FS. Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2). J Gastroen Hepatol. 2005, 20(2): 234-242. Ehrhardt GRA,Hijikata A,Kitamura H,Ohara O,Wang JY,Cooper MD. Discriminating gene expression profiles of memory B cell subpopulations. J Exp Med. 2008, 205(8): 1807-1817. Erickson AL,Kimura Y,Igarashi S,Eichelberger J,Houghton M,Sidney J,McKinney D,Sette A,Hughes AL,Walker CM. The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity. 2001, 15(6): 883-895. Fiscella M,Zhang HL,Fan SJ,Sakaguchi K,Shen SF,Mercer WE,VandeWoude GF,OConnor PM,Appella E. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. P Natl Acad Sci USA. 1997, 94(12): 6048-6053. Fisicaro P,Valdatta C,Massari M,Loggi E,Biasini E,Sacchelli L,Cavallo MC,Silini EM,Andreone P,Missale G,Ferrari C. Antiviral Intrahepatic T-Cell Responses Can Be Restored by Blocking Programmed Death-1 Pathway in Chronic Hepatitis B. Gastroenterology. 2010, 138(2): 682-93. Fourcade J,Sun ZJ,Benallaoua M,Guillaume P,Luescher IF,Sander C,Kirkwood JM,Kuchroo V,Zarour HM. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8(+) T cell dysfunction in melanoma patients. J Exp Med. 2010, 207(10): 2175-2186. Freeman GJ,Wherry EJ,Ahmed R,Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med. 2006, 203(10): 2223-2227. Gigley JP,Bhadra R,Moretto MM,Khan IA. T cell exhaustion in protozoan disease. Trends Parasitol. 2012, 28(9): 377-384. Gogoi D,Borkakoty B,Biswas D,Mahanta J. Activation and Exhaustion of Adaptive Immune Cells in Hepatitis B Infection. Viral Immunol. 2015, 28(7): 348-353. Gordon S,Akopyan G,Garban H,Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene. 2006, 25(8): 1125-1142. Gruener NH,Lechner F,Jung MC,Diepolder H,Gerlach T,Lauer G,Walker B,Sullivan J,Phillips R,Pape GR,Klenerman P. Sustained dysfunction of antiviral CD8(+) T lymphocytes after infection with hepatitis C virus. J Virol. 2001, 75(12): 5550-5558. Guidotti LG,Matzke B,Schaller H,Chisari FV. High-Level Hepatitis-B Virus-Replication in Transgenic Mice. J Virol. 1995, 69(10): 6158-6169. Harimoto H,Shimizu M,Nakagawa Y,Nakatsuka K,Wakabayashi A,Sakamoto C,Takahashi H. Inactivation of tumor-specific CD8(+) CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013, 91(9): 545-555. Hirano F,Kaneko K,Tamura H,Dong HD,Wang SD,Ichikawa M,Rietz C,Flies DB,Lau JS,Zhu GF,Tamada K,Chen LP. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005, 65(3): 1089-1096. Hoesel B, Schmid JA. The complexity of NF-kappa B signaling in inflammation and cancer. Mol Cancer. 2013, 12: 86. Hofseth LJ,Saito S,Hussain SP,Espey MG,Miranda KM,Araki Y,Jhappan C,Higashimoto Y,He PJ,Linke SP,Quezado MM,Zurer I,Rotter V,Wink DA,Appella E,Harris CC. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. P Natl Acad Sci USA. 2003, 100(1): 143-148. Huang LR,Wu HL,Chen PJ,Chen DS. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. P Natl Acad Sci USA. 2006, 103(47): 17862-17867. Inuzuka T,Takahashi K,Chiba T,Marusawa H. Mouse models of hepatitis B virus infection comprising host-virus immunologic interactions. Pathogens. 2014, 3(2): 377-389. Jiang Y,Li Y,Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015, 6: e1792. Jo J,Bengsch B,Seigel B,Rau SJ,Schmidt J,Bisse E,Aichele P,Aichele U,Joeckel L,Royer C,Ferreira KS,Borner C,Baumert TF,Blum HE,Lohmann V,Fischer R,Thimme R. Low perforin expression of early differentiated HCV-specific CD8+ T cells limits their hepatotoxic potential. J Hepatol. 2012, 57(1): 9-16. Johnston RJ,Comps-Agrar L,Hackney J,Yu X,Huseni M,Yang Y,Park S,Javina V,Chiu H,Irving B,Eaton DL,Grogan JL. The Immunoreceptor TIGIT Regulates Antitumor and Antiviral CD8(+) T Cell Effector Function. Cancer Cell. 2014, 26(6): 923-937. Kardava L,Moir S,Wang W,Ho J,Buckner CM,Posada JG,O'Shea MA,Roby G,Chen J,Sohn HW,Chun TW,Pierce SK,Fauci AS. Attenuation of HIV-associated human B cell exhaustion by siRNA down regulation of inhibitory receptors. J Clin Invest. 2011, 121(7): 2614-2624. Kared H,Fabre T,Bedard N,Bruneau J,Shoukry NH. Galectin-9 and IL-21 Mediate Cross-regulation between Th17 and Treg Cells during Acute Hepatitis C. Plos Pathog. 2013, 9(6): e1003422. Karimi G,Zadsar M,Vafaei N,Sharifi Z,FalahTafti M. Prevalence of antibody to Hepatitis B core antigen and Hepatitis B virus DNA in HBsAg negative healthy blood donors. Virol J. 2016, 13: 36. Kassardjian A,Rizkallah R,Riman S,Renfro SH,Alexander KE,Hurt MM. The Transcription Factor YY1 Is a Novel Substrate for Aurora B Kinase at G2/M Transition of the Cell Cycle. Plos One. 2012, 7(11): e50645. Kaufmann DE,Kavanagh DG,Pereyra F,Zaunders JJ,Mackey EW,Miura T,Palmer S,Brockman M,Rathod A,Piechocka-Trocha A,Baker B,Zhu B,Le Gall S,Waring MT,Ahern R,Moss K,Kelleher AD,Coffin JM,Freeman GJ,Rosenberg ES,Walker BD. Upregulation of CTLA-4 by HIV-specific CD4(+) T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol. 2007, 8(11): 1246-1254. Klenerman P, Thimme R. T cell responses in hepatitis C: the good, the bad and the unconventional. Gut. 2012, 61(8): 1226-1234. Koyama S,Akbay EA,Li YY,Herter-Sprie GS,Buczkowski KA,Richards WG,Gandhi L,Redig AJ,Rodig SJ,Asahina H,Jones RE,Kulkarni MM,Kuraguchi M,Palakurthi S,Fecci PE,Johnson BE,Janne PA,Engelman JA,Gangadharan SP,Costa DB,Freeman GJ,Bueno R,Hodi FS,Dranoff G,Wong KK,Hammerman PS. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016, 7: 10501. Lee PP,Yee C,Savage PA,Fong L,Brockstedt D,Weber JS,Johnson D,Swetter S,Thompson J,Greenberg PD,Roederer M,Davis MM. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999, 5(6): 677-685. Liang TJ. Hepatitis B: The Virus and Disease. Hepatology. 2009, 49(5): S13-21. Liang TJ, Ghany M. Hepatitis B e antigen - The dangerous endgame of hepatitis B. New Engl J Med. 2002, 347(3): 208-210. Lin YJ,Huang LR,Yang HC,Tzeng HT,Hsu PN,Wu HL,Chen PJ,Chen DS. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. P Natl Acad Sci USA. 2010, 107(20): 9340-9345. Liu GW,Hu XL,Sun B,Yang T,Shi JF,Zhang LF,Zhao Y. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1. Blood. 2013, 121(3): 519-529. Logvinoff C,Major ME,Oldach D,Heyward S,Talal A,Balfe P,Feinstone SM,Alter H,Rice CM,McKeating JA. Neutralizing antibody response during acute and chronic hepatitis C virus infection. P Natl Acad Sci USA. 2004, 101(27): 10149-10154. Lowe J,Cha H,Lee MO,Mazur SJ,Appella E,Fornace AJ. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci-Landmrk. 2012, 17: 1480-98. Lowe JM,Menendez D,Fessler MB. A new inflammatory role for p53 in human macrophages. Cell Cycle. 2014, 13(19): 2983-2984. Lu XB,Nannenga B,Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Gene Dev. 2005, 19(10): 1162-1174. Mantovani A,Sozzani S,Locati M,Allavena P,Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23(11): 549-555. Moir S, Fauci AS. B-cell exhaustion in HIV infection: the role of immune activation. Curr Opin Hiv Aids. 2014, 9(5): 472-477. Moir S,Ho J,Malaspina A,Wang W,DiPoto AC,O'Shea MA,Roby G,Kottilil S,Arthos J,Proschan MA,Chun TW,Fauci AS. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med. 2008, 205(8): 1797-1805. Moskophidis D,Lechner F,Pircher H,Zinkernagel RM. Virus Persistence in Acutely Infected Immunocompetent Mice by Exhaustion of Antiviral Cytotoxic Effector T-Cells. Nature. 1993, 362(6422): 758-761. Murray-Zmijewski F,Slee EA,Lu X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Bio. 2008, 9(9): 702-712. Nguyen T,Thompson AJV,Bowden S,Croagh C,Bell S,Desmond PV,Levy M,Locarnini SA. Hepatitis B surface antigen levels during the natural history of chronic hepatitis B: A perspective on Asia. J Hepatol. 2010, 52(4): 508-513. Nishimura H,Nose M,Hiai H,Minato N,Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999, 11(2): 141-151. Pal S,Bhattacharjee A,Ali A,Mandal NC,Mandal SC,Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm-Lond. 2014, 11: 23. Pestka JM,Zeisel MB,Blaser E,Schurmann P,Bartosch B,Cosset FL,Patel AH,Meisel H,Baumert J,Viazov S,Rispeter K,Blum HE,Roggendorf M,Baumert TF. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. P Natl Acad Sci USA. 2007, 104(14): 6025-6030. Rayter S,Elliott R,Travers J,Rowlands MG,Richardson TB,Boxall K,Jones K,Linardopoulos S,Workman P,Aherne W,Lord CJ,Ashworth A. A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene. 2008, 27(8): 1036-1044. Reignat S,Webster GJM,Brown D,Ogg GS,King A,Seneviratne SL,Dusheiko G,Williams R,Maini MK,Bertoletti A. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J Exp Med. 2002, 195(9): 1089-1101. Richter M,Dayaram T,Gilmartin AG,Ganji G,Pemmasani SK,Van der Key H,Shohet JM,Donehower LA,Kumar R. WIP1 Phosphatase as a Potential Therapeutic Target in Neuroblastoma. Plos One. 2015, 10(2): e0115635. Rizkallah R, Hurt MM. Regulation of the Transcription Factor YY1 in Mitosis through Phosphorylation of Its DNA-binding Domain. Mol Biol Cell. 2009, 20(22): 4766-4776. Sagiv-Barfi I,Kohrt HEK,Czerwinski DK,Ng PP,Chang BY,Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. P Natl Acad Sci USA. 2015, 112(9): E966-72. Schito ML,Demidov ON,Saito S,Ashwell JD,Appella E. Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation. J Immunol. 2006, 176(8): 4818-4825. Scognamiglio G,De Chiara A,Di Bonito M,Tatangelo F,Losito NS,Anniciello A,De Cecio R,D'Alterio C,Scala S,Cantile M,Botti G. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types. Int J Mol Sci. 2016, 17(5). Seeff LB. The history of the 'natural history' of hepatitis C (1968-2009). Liver Int. 2009, 29:89-99. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol R. 2000, 64(1): 51-68. Shanker P,Russo M,Harnisch B,Patterson M,Skolnik P,Lieberman J. Impaired function of circulating HIV-specific CD8(+) T cells in chronic human immunodeficiency virus infection. Blood. 2000, 96(9): 3094-3101. Staron MM,Gray SM,Marshall HD,Parish IA,Chen JH,Perry CJ,Cui GL,Li MO,Kaech SM. The Transcription Factor FoxO1 Sustains Expression of the Inhibitory Receptor PD-1 and Survival of Antiviral CD8(+) T Cells during Chronic Infection. Immunity. 2014, 41(5): 802-814. Stoop JN,van der Molen RG,Baan CC,van der Laan LJW,Kuipers EJ,Kusters JG,Janssen HLA. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 2005, 41(4): 771-778. Sui GC,El Bachir A,Shi YJ,Brignone C,Wall NR,Yin P,Donohoe M,Luke MP,Calvo D,Grossman SR,Shi Y. Yin Yang 1 is a negative regulator of p53. Cell. 2004, 117(7): 859-872. Sun LN,Li HR,Luo HY,Zhang LJ,Hu XL,Yang T,Sun CM,Chen H,Zhang LF,Zhao Y. Phosphatase Wip1 Is Essential for the Maturation and Homeostasis of Medullary Thymic Epithelial Cells in Mice. J Immunol. 2013, 191(6): 3210-3220. Takekawa M,Maeda T,Saito H. Protein phosphatase 2C alpha inhibits the human stress-responsive p38 and JNK MAPK pathways. Embo J. 1998, 17(16): 4744-4752. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005, 8(5): 369-380. Tzeng HT,Tsai HF,Liao HJ,Lin YJ,Chen L,Chen PJ,Hsu PN. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. Plos One. 2012, 7(6): e39179. Weiss GE,Crompton PD,Li SP,Walsh LA,Moir S,Traore B,Kayentao K,Ongoiba A,Doumbo OK,Pierce SK. Atypical Memory B Cells Are Greatly Expanded in Individuals Living in a Malaria-Endemic Area. J Immunol. 2009, 183(3): 2176-2182. Wherry EJ. T cell exhaustion. Nat Immunol. 2011, 12(6): 492-499. Wherry EJ,Blattman JN,Murali-Krishna K,van der Most R,Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol. 2003, 77(8): 4911-4927. Wolchok JD,Kluger H,Callahan MK,Postow MA,Rizvi NA,Lesokhin AM,Segal NH,Ariyan CE,Gordon RA,Reed K,Burke MM,Caldwell A,Kronenberg SA,Agunwamba BU,Zhang XL,Lowy I,Inzunza HD,Feely W,Horak CE,Hong Q,Korman AJ,Wigginton JM,Gupta A,Sznol M. Nivolumab plus Ipilimumab in Advanced Melanoma. New Engl J Med. 2013, 369(2): 122-133. Wu J,Meng ZJ,Jiang M,Pei RJ,Trippler M,Broering R,Bucchi A,Sowa JP,Dittmer U,Yang DL,Roggendorf M,Gerken G,Lu MJ,Schlaak JF. Hepatitis B Virus Suppresses Toll-like Receptor-Mediated Innate Immune Responses in Murine Parenchymal and Nonparenchymal Liver Cells. Hepatology. 2009, 49(4): 1132-1140. Yamamoto T,Price DA,Casazza JP,Ferrari G,Nason M,Chattopadhyay PK,Roederer M,Gostick E,Katsikis PD,Douek DC,Haubrich R,Petrovas C,Koup RA. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8(+) T-cell exhaustion in HIV infection. Blood. 2011, 117(18): 4805-4815. Yang PL,Althage A,Chung J,Maier H,Wieland S,Isogawa M,Chisari FV. Immune effectors required for hepatitis B virus clearance. P Natl Acad Sci USA. 2010, 107(2): 798-802. Yin WW,Xu L,Sun R,Wei HM,Tian ZG. Interleukin-15 suppresses hepatitis B virus replication via IFN-beta production in a C57BL/6 mouse model. Liver Int. 2012, 32(8): 1306-1314. Zajac AJ,Blattman JN,Murali-Krishna K,Sourdive DJD,Suresh M,Altman JD,Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998, 188(12): 2205-2213. Zhong HH,May MJ,Jimi E,Ghosh S. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell. 2002, 9(3): 625-636. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19024 | - |
| dc.description.abstract | 免疫系統在抵抗病源上扮演重要的角色,然而在慢性感染中受病毒感染的細胞可以使淋巴球呈現“免疫衰竭”狀態,逃脫免疫抵禦。免疫衰竭細胞的特徵為細胞表面會同時表現多個抑制性受體而抑制細胞的活化與增生。值得注意的是在慢性B型肝炎的病人中,T細胞的PD-1表達增加。而在人類免疫缺陷病毒感染的病人中,衰竭B細胞的FcγRIIB表達量上升。我們推論用藥物降低抑制性受體表達應能緩解免疫衰竭。CCT007093為Wip1去磷酸酶抑制劑,先前研究可抑制淋巴球細胞株上抑制性受體的表達。本研究探討其機制並進一步檢驗CCT007093是否能改善慢性B型肝炎的老鼠動物模式中的免疫衰竭現象。結果顯示CCT007093可以調降PD-1在Jurkat T細胞的表達,也可以減少PD-1和FcγRIIB在BJAB B細胞的表達。在慢性B型肝炎感染老鼠,CCT007093能減少血清中的HBsAg,顯示感染緩解現象. 而在抑制性受體的表達方面,經過CCT007093的治療後,減少在血液、脾臟以及肝臟中PD-1表達的T細胞的數量。這些組織中表達PD-1以及FcγRIIB的B細胞也呈現下降。此外,未治療的老鼠相比較,接受治療的老鼠的PD-1highCD127low 衰竭T細胞亦顯著減少。更重要的是CCT007093可以促進脾臟和肝臟中T細胞產生IFN-γ以改善T細胞的功能。在作用機制方面,我們發現CCT007093調降PD-1和FcγRIIB與磷酸化的p53 (S15)和NF-κB (S536)有關。此外,藉由PD-1啟動子螢光報導系統發現YY1和NF-κB在CCT007093調降PD-1基因轉錄中扮演角色。Wip1可以和p53結合且CCT007093增加p53 (S15)之磷酸化,Wip1亦可與YY1結合且該結合會受到CCT007093的抑制。YY1可與p53結合,且CCT007093會抑制YY1與p53的結合反應。有報導顯示YY1對p53具有抑制作用。由於在螢光報導的實驗中顯示p53可能對於PD-1的表達為正向的調控,故YY1應為負調控PD-1重要因子。若YY1也抑制其他的抑制性受體的表達,應可考慮為治療免疫衰竭的藥物標的。 | zh_TW |
| dc.description.abstract | Host immune system plays a critical role in defending against pathogens. However, in chronic infection virus-infected cells can evade host defense by making lymphocytes in a state of so-called immune exhaustion. Under this circumstance, immune cells are characterized by a concurrent up-regulation of multiple inhibitory receptors on their surface to negatively influence activation and proliferation. Notably, PD-1 is up-regulated on T cells in chronic HBV-infected patients; likewise, the levels of FcγRIIB increase on exhausted B cells in HIV patients. Here, we explore the use of CCT007093, a Wip1 phosphatase inhibitor, to decrease the expression levels of inhibitory receptors on lymphocyte cell lines and examine its underlying mechanisms. We found that CCT007093 down-regulated the expression of PD-1 on Jurkat T cells and also decreased PD-1 and FcγRIIB expression on BJAB B cells. We next determined whether CCT007093 can ameliorate immune exhaustion induced by chronic HBV infection in a mouse model. The CCT007093 reduced the serum HBsAg level in chronic infected mice. The percentages of PD-1+ T cells were decreased in the blood, spleen and liver after CCT007093 treatment. Similarly, PD-1+ and FcγRIIB+ B cells decreased in these compartments in response to CCT007093. Moreover, the percentages of PD-1highCD127low exhausted T cells also significantly decreased in CCT007093-treated mice in comparison to untreated mice. Moreover, CCT007093 enhanced the production of IFN-γ of T cells in the spleen and liver. On the other hand, we found that CCT007093 can down-regulate the gene expression levels of FcγRIIB and PD-1 by up-regulation of phosphorylated p53 (Ser 15) and NF-κB (Ser 536), respectively. We further identified that YY1 and NF-κB binding sites on PD-1 promoter play a crucial role in the inhibition of gene expression by CCT007093. CCT007093 increased the phospho-p53 (S15) by blocking Wip1. Interestingly, the interaction between YY1 and Wip1 was reduced by CCT007093. It is known that YY1 is a negative regulator of p53 and can interact with p53. Because the PD-1 promoter reporter assays indicated that p53 may be a positive regulator in the PD-1 gene expression, YY1 thus might be a key factor to down-regulate the gene expression of PD-1. If YY1 can inhibit the expression of other inhibitory receptors, YY1 might be a specific drug target for the reversal of immune exhaustion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:42:39Z (GMT). No. of bitstreams: 1 ntu-105-R03443006-1.pdf: 5050999 bytes, checksum: ae7fe35c276b3837b31864b7e51f9ad2 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v CONTENTS vii LIST of FIGURES x LIST of ABBREVIATIONS xi Chapter 1 Introduction 1 1.1 Immune exhaustion 2 1.1.1 The definition of immune exhaustion 2 1.1.2 T cell exhaustion 2 1.1.3 B cell exhaustion 5 1.2 Cancers 6 1.3 Chronic infection 8 1.3.1 Hepatitis B virus infection (HBV) 8 1.3.2 Hepatitis C virus infection (HCV) 12 1.3.3 Lymphocytic choriomeningitis virus (LCMV) 14 1.3.4 Human immunodeficiency virus infection (HIV) 15 1.3.5 Parasites 16 1.4 Reinvigoration of Immune exhaustion 17 1.5 p53 18 1.6 NF-κB 19 1.7 YY1 20 1.8 Wip1 21 1.8.1 Wip1 21 1.8.2 Wip1 inhibitors 23 1.9 Motivation 25 Chapter 2 Materials & Methods 27 2.1. Reagents and antibodies 28 2.2. Cell lines 28 2.3. Animals 29 2.4. The HBV construct and hydrodynamic injection 29 2.5. Isolation of intrahepatic leukocytes 30 2.6. Flow cytometry 31 2.6.1 Preparation of the mouse mononuclear cells from peripheral blood for flow cytometry 31 2.6.2 Preparation of mouse splenocytes for flow cytometry 32 2.6.3 Preparation of intrahepatic leukocytes for flow cytometry 32 2.6.4 Intracellular staining 32 2.7. Plasmids 33 2.8. Cell transfection 33 2.9. Dual-luciferase reporter assay 34 2.10. Western blotting 35 2.11. Immunoprecipitation 36 Chapter 3 Results 37 3.1 CCT007093 reduced the persistence of HBsAg in serum of chronic HBV mice 38 3.2 CCT007093 decreased the expression of inhibitory receptors on circulating T cells and B cells of chronic HBV mice 39 3.3 CCT007093 down-regulated the expression levels of PD-1 on T cells and B cells and FcγRIIB on B cells in the spleen of chronic HBV mice 40 3.4 The expression levels of PD-1 and FcγRIIB on T cells and B cells in the liver were reduced by CCT007093 treatment in chronic HBV mice 42 3.5 The effector functions of T cells in the spleen and liver were restored in CCT007093-treated mice 44 3.6 P-p53 (S15) and p-p65 (S536) may involve in the down-regulation of PD-1 and FcγRIIB expression by CCT007093 45 3.7 Wip1 was able to interact with YY1 and p-p53 (S15). 47 Chapter 4 Discussion 50 4.1 The effects of CCT007093 treatment in chronic HBV infected mice 51 4.2 Potential side effects of Wip1 inhibition 52 4.3 Antibody drugs vs. chemical drugs 55 4.4 Other mouse models of HBV infection 56 4.5 The role of YY1 in CCT007093-mediated down-regulation of PD-1 and FcγRIIB 58 Figures 62 Appendix 102 References 104 | |
| dc.language.iso | en | |
| dc.subject | 免疫衰竭 | zh_TW |
| dc.subject | CCT007093 | zh_TW |
| dc.subject | PD-1 | zh_TW |
| dc.subject | FcγRIIB | zh_TW |
| dc.subject | B型肝炎 | zh_TW |
| dc.subject | Immune exhaustion | en |
| dc.subject | FcγRIIB | en |
| dc.subject | hepatitis B virus infection | en |
| dc.subject | CCT007093 | en |
| dc.subject | PD-1 | en |
| dc.title | CCT007093藉由調降淋巴球的抑制性受體來緩解慢性B型肝炎引起的免疫衰竭 | zh_TW |
| dc.title | CCT007093 alleviates immune exhaustion in chronic hepatitis B infection by downregulation of inhibitory receptors on lymphocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 符文美(Wen-Mei Fu),蔡丰喬(Feng-Chiao Tsai),林琬琬(Wan-Wan Lin) | |
| dc.subject.keyword | 免疫衰竭,B型肝炎,FcγRIIB,PD-1,CCT007093, | zh_TW |
| dc.subject.keyword | Immune exhaustion,hepatitis B virus infection,FcγRIIB,PD-1,CCT007093, | en |
| dc.relation.page | 115 | |
| dc.identifier.doi | 10.6342/NTU201603247 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
