請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19017
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
dc.contributor.author | Shih-Chien Lin | en |
dc.contributor.author | 林詩倩 | zh_TW |
dc.date.accessioned | 2021-06-08T01:42:28Z | - |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-18 | |
dc.identifier.citation | 1. VanCleave, J., Janice VanCleave's A+ Projects in Chemistry: Winning Experiments for Science Fairs and Extra Credit. 1993: John Wiley & Sons, Inc. . 240.
2. Enrico Traversa et al., Ceramic sensors for humidity detection: the state-of-the-art and future developments, Sensors and Actuators B: Chemical, 23, 1995, pp. 135-156. 3. C. Wood, et al., Measurement of Seebeck coefficient using a light pulse, Rev. Sci. Instrum. 56,1985 ,719 4. K.G. Ong et al., Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor. Sensors and Actuators A: Physical, 93, 2001, pp. 33–43 5. A modular 1mm3 die-stacked sensing platform with optical communication and multi-modal energy harvesting. in IEEE International Solid-State Circuits Conference, 2012 International. 2012. 6. Kimura, M. and K. Toshima, Thermistor-like pn junction temperature-sensor with variable sensitivity and its combination with a micro-air-bridge heater. Sensors and Actuators A: Physical, 2003. 108(1–3): p. 239-243. 7. J. Laconte et al., High-sensitivity capacitivehumidity sensor using 3-layer patterned polyimide sensing film. Proceedings of IEEE Sensors, 1, 2003, pp. 372-377. 8. Lei Gu, et al., A novel capacitive-type humidity sensorusing CMOS fabrication technology. Sensors and Actuators B: Chemical, 99, 2004, pp. 491-498. 9. F Molina-Lopez, et al., Large-area compatible fabrication and encapsulation of inkjet-printed humidity sensors on flexible foils with integrated thermal compensation. J. Micromech. Microeng. 23, 2013, 0250121 10. Bao, Z., et al., High-Performance Plastic Transistors Fabricated by Printing Techniques. Chemistry of Materials, 1997. 9(6): p. 1299-1301. 11. Zschieschang, U., et al., Flexible Organic Circuits with Printed Gate Electrodes. Advanced Materials, 2003. 15(14): p. 1147-1151. 12. Krebs, F.C., et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 422-441. 13. Miller, S.M., S.M. Troian, and S. Wagner, Direct printing of polymer microstructures on flat and spherical surfaces using a letterpress technique. Journal of Vacuum Science & Technology B, 2002. 20(6): p. 2320-2327. 14. Le, H.P., Progress and trends in ink-jet printing technology. Journal of Imaging Science and Technology, 1998. 42(1): p. 49-62. 15. Lee, D.H., et al., Functional porous tin oxide thin films fabricated by inkjet printing process. Electrochemical and Solid State Letters, 2007. 10(11): p. K51-K54. 16. Perelaer, J., B.J. de Gans, and U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Advanced Materials, 2006. 18(16): p. 2101 17. Feteira, A., Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective. Journal of the American Ceramic Society, 2009. 92(5): p. 967-983. 18. Shih, F.Y., et al., Low-temperature synthesis of nanocrystalline NiO-YSZ powders by succinic acid-assisted combustion. Journal of Power Sources, 2006. 160(1): p. 148-154. 19. Kimura, M. and K. Toshima, Thermistor-like pn junction temperature-sensor with variable sensitivity and its combination with a micro-air-bridge heater. Sensors and Actuators A: Physical, 2003. 108(1–3): p. 239-243. 20. Kan-Sen Chou, et al., Sensing mechanism of a porousceramic as humidity sensor. Sensors and Actuators B: Chemical, vol. 56, Jul. 1999, pp. 106-111. 21. T. Hubert et al., Humidity-sensing materials, MRS Bulletin, 24, 1999, pp. 49–54. 22. Chia-Yen Lee et al., Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation, Journal of Micromechanics and Microengineering, 13, 2003, pp. 620-627. 23. Pan, Q.M. and J. Liu, Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. Journal of Solid State Electrochemistry, 2009. 13(10): p. 1591-1597. 24. Wang, H.B., et al., Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. Journal of Applied Electrochemistry, 2009. 39(9): p. 1597-1602. 25. Chan, I.M. and F.C. Hong, Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode. Thin Solid Films, 2004. 450(2): p. 304-311. 26. Shin, W., et al., Thermoelectric thick-film hydrogen gas sensor operating at room temperature. Japanese Journal of Applied Physics Part 2-Letters, 2001. 40(11B): p. L1232-L1234. 27. Korosec, R.C. and P. Bukovec, Sol-gel prepared NiO thin films for electrochromic applications. Acta Chimica Slovenica, 2006. 53(2): p. 136-147. 28. Hagelin-Weaver, H.A.E., et al., Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 2004. 134(2-3): p. 139-171. 29. Hotovy, I., et al., Characterization of NiO thin films deposited by reactive sputtering. Vacuum, 1998. 50(1-2): p. 41-44. 30. Park, K. and D.Y. Bang, Electrical properties of Ni-Mn-Co-(Fe) oxide thick-film NTC thermistors prepared by screen printing. Journal of Materials Science-Materials in Electronics, 2003. 14(2): p. 81-87. 31. H. Sato et al., Transparent conducting p-type NiO thin films prepared by magnetron sputtering Thin Solid Films, 236, 1993, 27-31. 32. Dutta, T., et al., Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. Journal of Applied Physics, 2010. 108(8). 33. Hotovy, I., et al., Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering. Vacuum, 1998. 51(2): p. 157-160. 34. Kadam, L.D. and P.S. Patil, Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Solar Energy Materials and Solar Cells, 2001. 69(4): p. 361-369. 35. Rubin, M., et al., Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Solar Energy Materials and Solar Cells, 1998. 54(1-4): p. 59-66. 36. Y. Yang, et al., Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency. Appl. Phys. Lett. 64, 1994, 1245. 37. D. DeLongchamp et al., Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices. Adv. Mater. 13, 2001, 1455. 38. Macdiarmid A.G et al., Aqueous chemistry and electrochemistry of polyacetylene and Polyaniline: application to rechargeable batteries. Molecular Crystals & Liquid Crystals, 121, 1985, pp. 173, 1985.. 39. 王宗雄et al., 導電高分子聚苯胺之簡介及其應用,工業材料雜誌, 175, 2001, pp. 165-175. 40. A.A. Karyakin., et al., Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions.: Electropolymerization of substituted anilines. Journal of Electroanalytical Chemistry, 371, 1994, 259-265. 41. Mamta PANDEY et al., Humidity Response of Polyaniline Based Sensor. Sensors & Transducers Journal, 113, 2010, 33. 42. P.J. Schubert et al., A polyimide-based capacitive humidity sensor, IEEE Transactions on Electron Devices, 32, 1985, pp. 1220-1223. 43. Ahn, B.Y., et al., Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science, 2009. 323(5921): p. 1590-1593. 44. T. Yang., et al., Fabrication of silver interdigitated electrodes on polyimide films viasurface modification and ion-exchange technique and its flexiblehumidity sensor application. Sensors and Actuators B 208, 2015, 327–333. 45. 黃竣志, 氧化鎳熱敏電阻於溫度感測微陣列之應用, 國立台灣大學化學工程學系碩士論文, 2013. 46. H. Shibata, M. Ito, M. Asakursa, and K. Watanabe, A digital hygrometer using apolyimide film relative humidity sensor, IEEE Transactions on nstrumentation and Measurement, 45, 1996, pp. 564-569. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19017 | - |
dc.description.abstract | 本研究利用噴墨技術製備同時同點量測之溫濕度感測器,並研究其性質與描述方法。為使材料特性能夠獲得充分了解,首先以奈米粒子墨水噴製銀線、氧化鎳、聚苯胺作為本實驗之電極、溫敏電阻、濕敏電容薄膜,並製作單一感測器。藉由對單一感測元件之特性描述、參數控制,在175℃的後處理後及封裝後,可得良好特性之溫度感測器薄膜,其遵守阿瑞尼士方程式,且有高於市售標準之使用靈敏度,且反應時間極短,以手指觸碰僅3秒即可產生電阻變化;濕度感測器因吸附水氣而產生之電容改變,其吸附現象可以Frendlich等溫吸附線描述,且為一有利吸附
本文亦探討單一感測器製程中之影響因素,如感測器厚度如何影響感測器表現:氧化鎳溫度感測器電子傳導機制為表面電流,因此厚度無法增加其導電度,反而與其表面樣態有關;而聚苯胺厚度則是影響電容大小的因素,但過厚的聚苯胺會造成高濕度時數值失準。而不同面積之氧化鎳薄膜並不影響其表現,卻會些許影響其反應時間;不同面積的聚苯胺薄膜,其電容大小與面積成正相關。 為降低初始電阻使其可運用於室溫或是更低之溫度,本文在製備溫溼度感測器前,亦研究如何利用改變立體結構與混摻材料之方法降低溫度感測器之電阻值,我們利用電極-溫度感測器-電極之立體結構,可有效降低其初始電阻,但其為一較不穩定的結構;若使用銀粒子參雜,則可使初始電阻降低1個數量及至約10MΩ,靈敏度仍保持在3000K。接著我們利用不同裝置迴路達到並聯之感測器組的效果,並利用變數分析、數量級分析與逐步探討等技巧,配合材料本身參數對電阻電容變化之的特性,由雙迴路感測器系統逐步探討至同時同點量測之溫濕度感測組。其模式並無太大改變,並皆可以公式描述。由上述可知,本研究可以簡單不需遮罩、低成本之噴墨製程,製備一低溫可利用之同點同時量測溫溼度感測器組,其對於溫濕度同時量測有一定的信賴度。並利用噴墨參數之調整,使感測器之靈敏度與遲滯時間得到較好之改善。 | zh_TW |
dc.description.abstract | In this research, material used in thermistor and capacitive humidity sensor will be investigated. First we choose silver nanoparticle to fabricate the electrode, nickel oxide for thermistor, polyaniline for capacitive humidity sensor. After 175℃ post-treatment and package, we investigate the single sensor and optimize them by adjust the inkjet parameters. The well-adjusting thermistor will obey Arrhenius equation and has a sensitivity higher than commercial uses. The capacitive humidity sensor will obey Frendlich isotherm.
For commercialized temperature and humidity control system there two sensors with independent circuit to monitor temperature and humidity respectively, however in some extreme condition such as freezer or reflow oven these two sensors may interrupt to each other that results in decreased sensitivity. Therefore, in order to overcome this challenge, this research is aimed at integrating sensing material into one parallel circuit on flexible substrates via a low cost direct writing technology. A layer-by-layer strategy is used to integrate the temperature-sensitive NiO layer and humidity-sensitive polyaniline (PANI) layer together as a highly responsive device. The sensing elements, which have an adjustable dimension with a submillimeter scale, can operate over a wide range from temperature lower than 20°C to 100 °C and 20% RH to 90% RH with a great sensitivity. After adjust of inkjet parameters and adding silver nanoparticle into nickel oxide ink for the purpose of optimization for this sensor circuit, this circuit will be analyzed carefully to read temperature and humidity measurements at once. From the water adsorption on PANI thin film and temperature variation in NiO layer, the resistance and capacitance readings of the device in AC mode can be directly correlated to the environmental conditions. A correlation formula combining Arrhenius equation and Frendlich isotherm will be developed to accurately describe the sensor responses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:42:28Z (GMT). No. of bitstreams: 1 ntu-105-R03524077-1.pdf: 2937467 bytes, checksum: ee7d63ce2a027a5e7fe5dd95f04d4f5e (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 III
英文摘要 VII 目錄 IX 圖目錄 XI 第一章 緒論 2 1.1 前言 2 1.2 研究目的 4 1.3 論文架構 6 第二章 理論基礎與文獻回顧 7 2.1 噴墨技術介紹 7 2.2 溫度感測器 11 2.3 濕度感測器 14 2.4 溫濕度整合感測器 16 2.5 氧化鎳 16 2.6 聚苯胺 19 第三章 墨水調配與單一感測器製作 23 3.1 實驗方法 23 3.1.1 墨水的製備與其性質的量測 23 3.1.2 液膜的噴塗與後處理 25 3.1.3 特性分析 27 3.2 實驗結果與討論 30 3.2.1 墨水穩定性分析 30 3.2.2 感測器的燒結溫度 31 3.2.3 感測元件的製作與樣態 32 3.2.4 薄膜電性分析 33 3.2.5 氧化鎳薄膜厚度對溫度感測器之表現 35 3.2.6 聚苯胺薄膜厚度對濕度感測器之表現 37 3.2.7 封裝效果及其對溫度感應器之表現 38 3.2.8 感測器薄膜面積對其表現之變化 39 3.3 結論 42 第四章 並聯使用之溫濕度感測迴路研究 43 4.1 實驗方法 43 4.1.1 元件與迴路分析 43 4.1.2 降低熱敏材料初始電阻研究 44 4.1.3 附溫度補償之濕度感測器迴路 45 4.1.4 同時不同點測量之溫濕度感測器迴路 47 4.1.5 同時同點測量之溫濕度感測迴路 48 4.1.6 特性分析 49 4.2 實驗結果與討論 51 4.2.1 變數分析 51 4.2.2 以疊層方式降低溫度感測器初始電阻之研究 52 4.2.3 以添加銀顆粒降低溫度感測器初始電阻之研究 54 4.2.4 雙迴路溫度補償濕度感測器之電性分析 56 4.2.5 同時不同點溫濕度感測器之電性分析 59 4.2.6 同時同點量測溫度感測器之電性分析 61 4.3 結論 66 第五章 結論 68 第六章 未來展望 70 參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 利用噴墨技術製作可同時量測之微型層疊溫濕度感測迴路 | zh_TW |
dc.title | Fabrication of micro sensors for simultaneous temperature and humidity measurements via inkjet printing technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧彥文(Yen-Wen Lu),康敦彥(Dun-Yen Kang),衛子健(Tzu-Chien Wei) | |
dc.subject.keyword | 噴墨技術,同時量測,微型溫濕度感測器迴路,氧化鎳,聚苯胺, | zh_TW |
dc.subject.keyword | Inkjet Printing,Simultaneously Measure,Micro Temperature and Humidity Parallel Circuit,Nickel Oxide,Polyaniline, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201603204 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。