Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18979
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧
dc.contributor.authorYu-Chun Chienen
dc.contributor.author簡毓均zh_TW
dc.date.accessioned2021-06-08T01:41:24Z-
dc.date.copyright2016-09-08
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation[1] Zhou, S.; Wang, L.; Yang, X.; Chen H.M.; Yang, G.; Gong, T.; Li, W.B. Polym. Chem. 2013, 4, 4461-4468.
[2] Chae Jung, Y.; Hwa So, H.; Whan Cho, J. Water‐Responsive Shape Memory Polyurethane Block Copolymer Modified with Polyhedral Oligomeric Silsesquioxane. J. Macromol. Sci., Part B. 2006, 45, 453-461.
[3] Long, K.N.; Scott, T.F.; Qi, H.J.; Bowman, C.N.; Dunn M.L. Photo mechanics of light-activated polymers. J Mech Phys Solids. 2009, 57, 1103-1121.
[4] Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature. 2005, 434, 879-882.
[5] Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. J. Mater. Chem. A. 2013, 1, 3263-3267.
[6] Y. Shi, M. Yoonessi and R. A. Weiss, Macromolecules. 2013, 46, 4160–4167.
[7] Jung, Y.C.; Yoo, H. J.; Kim, Y.A.; Cho, J.W.; Endo, M. Carbon. 2010, 48, 1598-1603.
[8] Fei, G.X.; Li, G.; Wu, L.S.; Xia, H.S. A spatially and temporally controlled shape memory process for electrically conductive polymer-carbon nanotube composites. Soft Matter. 2012, 8, 5123-5126.
[9] Leng, J.S.; Lv, H.B.; Liu, Y.J.; Du, S.Y. Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 2007, 91, 44105.
[10] Razzaq, MY; Behl, M; Lendlein, A. Magnetic memory effect of nanocomposites. Adv Funct Mater. 2012, 22, 184-191.
[11] Lendlein, A.; Steffen, K. Shape‐memory polymers. Angew. Chem. Int. Ed. Engl. 2002, 12, 2034-2057.
[12] Eggeler, G. ; Hornbogen, E. ; Yawny, A. ; Heckmann, A.; Wagner, M. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A. 2004, 1, 24-33.
[13] Morgan, N.B. Medical shape memory alloy applications—the market and its products Mater. Sci. Eng. A. 2004, 1, 16-23.
[14] Alteheld, A.; Feng, Y.; Kelch, S.; Lendlein, A. Biodegradable, amorphous copolyester‐urethane networks having shape‐memory properties. Angew. Chem. Int. Ed. Engl. 2005, 8, 1188-1192.
[15] Ratna, D.; Karger-Kocsis, J. Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 2008, 43, 254-269.
[16] Miaudet, P.; Derré, A.; Maugey, M.; Zakri, C.; Piccione, P. M.; Inoubli, R.; Poulin, P., Shape and temperature memory of nanocomposites with broadened glass transition. Science. 2007, 318, 1294-1296.
[17] Cho, J. W.; Kim, J. W.; Jung, Y. C.; Goo, N. S., Electroactive shape‐memory polyurethane composites incorporating carbon nanotubes. Macromol. Rapid Commun. 2005, 26, 412-416.
[18] Cha, K. J.; Lih, E.; Choi, J.; Joung, Y. K.; Ahn, D. J.; Han, D. K. Shape‐Memory Effect by Specific Biodegradable Polymer Blending for Biomedical Applications. Macromol. Biosci. 2014, 14, 667-678.
[19] Cohn, D.; Stern, T.; González, M. F.; Epstein, J. Biodegradable poly (ethylene oxide)/poly (ϵ‐caprolactone) multiblock copolymers. J. Biomed. Mater. res. 2002, 59, 273-281.
[20] Heuwers B, Quitmann Q, Katzenberg F, Tiller JC. Stress-induced melting of crystals in natural rubber: a new way to tailor the transition temperature of shape memory polymers. Macromol. Rapid Commun. 2012,33,1517-1522.
[21] Ozbas, B.; Toki, S.; Hsiao, B.S.; Chu, B.; Register, R.A.; Aksay, I.A.; Adamson, D.H. Strain‐induced crystallization and mechanical properties of functionalized graphene sheet‐filled natural rubber. Journal of polymer science part B: Polymer physics. 2012, 50, 718-723.
[22] Yakacki, C. M.; Shandas, R.; Safranski, D.; Ortega, A. M.; Sassaman, K.; Gall, K. Strong, Tailored, Biocompatible Shape‐Memory Polymer Networks. Adv. Funct. Mater. 2008, 18, 2428-2435.
[23] Hampikian, J. M.; Heaton, B. C.; Tong, F. C.; Zhang, Z.; Wong, C. Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mater. Sci. Eng., Part C 2006, 26, 1373-1379.
[24] Krueger, U.; Zanow, J.; Scholz, H. Computational fluid dynamics and vascular access. Artif. organs. 2002, 26, 571-575.
[25] Small IV, W.; Metzger, M. F.; Wilson, T. S.; Maitland, D. J. Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis. IEEE J. Quantum Electron. 2005, 11, 892-901.
[26] Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. 2002, 296, 1673-1676.
[27] Zhang, D.; George, O. J.; Petersen, K. M.; Jimenez-Vergara, A. C.; Hahn, M. S.; Grunlan, M. A. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater. 2014, 10, 4597-4605.
[28] Malisch, T.W.; Guglielmi, G.; Viñuela, F.; Duckwiler, G.; Gobin, Y.P.; Martin, N.A.; Frazee, J.G. Intracranial aneurysms treated with the Guglielmi detachable coil: midterm clinical results in a consecutive series of 100 patients. Journal of neurosurgery. 1997, 87, 176-183.
[29] Metcalfe, A.; Desfaits, A.C.; Salazkin, I.; Yahia, L.H.; Sokolowski, W.M.; Raymond, J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials. 2003, 24, 491-497.
[30]Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. 2002, 296, 1673-1676.
[31] Xue, L.; Dai, S.; Zhao, Y.; Li, Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials. 2010, 31, 8132-8140.
[32] Luo, H.; Hu, J.; Zhu, Y. Polymeric shape memory nanocomposites with heterogeneous twin switches. Macromol. Chem. Phys. 2011, 212, 1981-1986.
[33] Huang, W.; Yang, B.; An, L.; Li, C.; Chan, Y., Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 2005, 86, 114105.
[34] Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Water-induced shape-memory poly(d,l-lactide)/microcrystalline cellulose composites. Carbohydrate Polymers. 2014;104:101-108.
[35] Guelcher, S.A.; Gallagher, K.M.; Didier, J.E.; Klinedinst, D.B.; Doctor, J.S.; Goldstein. A.S.; Hollinger, J.O. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterialia. 2005, 1, 471-484.
[36] Kim, B.K.; Shin, Y.J.; Cho, S.M.; Jeong, H.M. Shape‐memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2652-2657.
[37] Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer. 2006, 47, 3073-3082.
[38] Kang, S. M., S. J. Lee, and B. K. Kim. Shape memory polyurethane foams. Express polym. lett. 2012, 6, 63-69.
[39] Devarakonda, S.; Gupta, K.; Chalmers, M.J.; Hunt, J.F.; Griffin, P.R.;Van Duyne, G.D.; Spiegelman, B.M. Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1α/ERRγ complex. Proceedings of the National Academy of Sciences. 2011, 108, 18678-18683.
[40] Pollack, L.; Tate, M.W.; Darnton, N.C.; Knight, J.B.; Gruner, S.M.; Eaton, W.A.; Austin, R.H. Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proc. Natl. Acad. Sci. 1999, 96, 10115-10117.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18979-
dc.description.abstract在形狀記憶材料中,擁有生物可降解特性的溫感性形狀記憶彈性體在生醫應用上有相當大的潛力。本篇研究中,形狀記憶彈性體是利用poly(-caprolactone) (PCL) oligodiol 和 poly(L-lactic acid) (PLLA) oligodiol兩種軟鏈段以不同比例調整鏈段結晶度,並最佳化形狀記憶性質最好的形狀記憶聚胺酯。一系列的聚胺酯透過差式掃描量熱儀(differential scanning calorimeter,DSC)、X-ray繞射( X-ray diffraction ,XRD)和小角度散射( small angle X-ray scattering,SAXS)分析聚胺酯的結晶。接著,更進一步結合拉力機和原位即時小角/廣角散射(in situ SAXS/WAXS)分析聚胺酯在形狀記憶過程中不同狀態下的結晶行為,並解釋形狀記憶的機制。在2D SAXS圖上的菱形表示順向結晶的生成,有助於固定形狀,並進一步說明恢復是依靠非晶鏈段的彈性。38 wt% PCL 和 25 wt% PLLA組成的聚胺酯能夠在37°C的水中達到恢復率近100%。此外,形狀記憶聚胺酯也有良好的內皮細胞存活率和較低的血小板活化程度。zh_TW
dc.description.abstractThermally induced shape memory is an attractive feature of certain functional materials. Among the shape memory polymers, shape memory elastomers (SMEs) especially those with biodegradability have great potential in the biomedical field. In this study, we prepared waterborne biodegradable polyurethane SME based on poly(-caprolactone) (PCL) oligodiol and poly(L-lactic acid) (PLLA) oligodiol as the mixed soft segments. The ratio of the soft segments in polyurethanes was optimized for shape memory behavior. The thermally induced shape memory mechanism of the series of polyurethanes was clarified using differential scanning calorimeter (DSC), X-ray diffraction (XRD), and small angle X-ray scattering (SAXS). In particular, the in situ SAXS measurements combined with shape deformation processes were employed to examine the stretch-induced (oriented) crystalline structure of the polyurethanes and to elucidate the unique mechanism for shape memory properties. The polyurethane with optimized PLLA crystalline segments showed a diamond-shape two-dimensional SAXS pattern after being stretched, which gave rise to better shape fixing and shape recovery. The shape memory behavior was further tested in 37°C water. The biodegradable polyurethane comprising 38 wt% PCL segments and 25 wt% PLLA segments and synthesized at a relatively lower temperature by the waterborne procedure showed ~100% shape recovery in 37°C water. The biodegradable polyurethane SME also demonstrated good endothelial cell viability as well as low platelet adhesion/activation. We conclude that the waterborne biodegradable polyurethane SME possesses a unique thermally induced shape memory mechanism and may have potential applications in making shape memory biodegradable stents or scaffolds.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:41:24Z (GMT). No. of bitstreams: 1
ntu-105-R03549022-1.pdf: 3719853 bytes, checksum: 30786b8797b27921e4994164955b5e48 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 文獻回顧 1
1.1. 形狀記憶材料 1
1.2. 形狀記憶的生醫應用 3
1.3. 水分驅動形狀記憶 5
1.4. 形狀記憶與聚胺酯 6
1.5. 研究目的 7
第二章 研究方法 9
2.1. 研究架構 9
2.2. L型聚乳酸二元醇合成與鑑定 10
2.2.1. L型聚乳酸二元醇之製備 10
2.2.2. L型聚乳酸二元醇之分子量鑑定 10
2.3. 形狀記憶聚胺酯(Shape memory polyurethane, SMPU)之合成 11
2.3.1 水性聚胺酯合成原料 11
2.3.2. 水性聚胺酯聚合反應 13
2.4. 形狀記憶聚胺酯薄膜之製備 14
2.4.1. 薄膜製備 14
2.5. 長鏈二元醇熱性質分析 15
2.5.1. 熱重分析 15
2.5.2. 差示掃描量熱 15
2.6. 形狀記憶聚胺酯之物化性質分析 16
2.6.1. 傅立葉紅外光譜儀 16
2.6.2. 膠體滲透層析儀 16
2.6.3. 熱重分析 16
2.6.4. 差式掃描量熱儀 17
2.6.5. 廣角X光繞射分析儀 17
2.6.6. 拉力試驗機 18
2.6.7. 小角度X光繞射 18
2.8. 空氣形狀記憶測試 18
2.9. 原位小角度及廣角分析 19
2.10. 水中形狀記憶測試 20
2.11. 衰減式全反射傅立葉紅外光譜分析 20
2.12. 機械性質分析 20
2.13.牛頸動脈內皮細胞(Bovine aortic endothelial cell)相容性測試 21
2.14. 血小板吸附測試 22
2.15. 統計分析 22
第三章 實驗結果 23
3.1. SMPU薄膜物化性質分析 23
3.1.1. 分子量分析 23
3.1.2. 傅立葉紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)分析 23
3.1.3. 核磁共振儀(Nuclear Magnetic Resonance, NMR) 24
3.1.4. 機械性質分析 25
3.1.5. 熱重性質分析 25
3.1.6. 差式掃描量熱儀分析 26
3.1.7. 廣角x光繞射(wide angle x-ray diffraction, XRD) 27
3.1.8. 小角X光散射(small angle x-ray scattering, SAXS) 27
3.2. SMPU形狀記憶測試 28
3.2.1. 空氣形狀記憶測試 28
3.2.2. 水中形狀記憶測試 29
3.3. 原位小角度/廣角度X光分析 29
3.4. 水對於機械性質及表面氫鍵的影響 30
3.5. 生物相容性測試 31
3.5.1. 牛頸動脈內皮細胞活性測試 31
3.5.2. 血小板貼附測試 32
第四章 討論 33
4.1.聚胺酯分子量分析 33
4.2.機械性質分析 34
4.3.聚胺酯熱性質分析 34
4.4.廣角X光繞射結晶性質分析 35
4.5.小角X光散射分析 36
4.6.空氣形狀記憶性質分析 37
4.7. 原位小角/廣角X光分析 38
4.8. 水中形狀記憶性質分析 39
4.9. 生物相容性測試 40
第五章 結論 42
參考文獻 43
dc.language.isozh-TW
dc.subject原位即時小角度散射zh_TW
dc.subject形狀記憶聚胺酯zh_TW
dc.subject生物可降解zh_TW
dc.subject生物相容性zh_TW
dc.subject彈性體zh_TW
dc.subjectin situ SAXSen
dc.subjectelastomer.en
dc.subjectbiocompatibleen
dc.subjectbiodegradableen
dc.subjectshape memory polyurethaneen
dc.title生物可降解聚胺酯形狀記憶彈性體之性質分析與機制zh_TW
dc.titlePreparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomersen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫一明,賴森茂
dc.subject.keyword形狀記憶聚胺酯,原位即時小角度散射,生物可降解,生物相容性,彈性體,zh_TW
dc.subject.keywordshape memory polyurethane,in situ SAXS,biodegradable,biocompatible,elastomer.,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201602966
dc.rights.note未授權
dc.date.accepted2016-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved