請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18967完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周元昉(Yuan-Fang Chou) | |
| dc.contributor.author | Ya-Chi Tu | en |
| dc.contributor.author | 杜雅棋 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:41:02Z | - |
| dc.date.copyright | 2016-08-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | [1] Mazumdar, J., 2015, Biofluid Mechanics, 2nd Edition, World Scientific Publishing Company.
[2] Kwon, Y. W., 2015, Multiphysics and Multiscale Modeling: Techniques and Applications, Chapter 12, CRC Press. [3] 張涵軒、曾春典, 2006, 深部靜脈血栓的治療現況, 臺灣醫界,第1卷第1期,頁9-10。 [4] 周小煦、王晓昆, 2007, 超声溶栓的研究进展, 實用醫學進修雜誌,第23卷第6期,頁794-796。 [5] 周国辉、他得安、汪源源、王威琪, 2007, 超声溶栓, 應用聲學,第26卷第1期,頁55-59。 [6] 刘聪、童晓欣, 2009, 急性缺血性卒中溶栓治疗进展,国际脑血管病杂志,第17卷第11期,頁866-870。 [7] 華興、高云華, 2006, 超聲波與聲學造影劑在溶栓中的作用,臨床超聲醫學雜志,第8卷第7期,頁425-427。 [8] EKOS Acoustic Pulse Thrombolysis, 2014, EKOS Corporation. GxUS-EKO-2014 -0100(www.btgplc.com). [9] ANGIOJET ULTRA Thrombectomy System: Enhancing Your Options for Restoring Flow, 2015, Boston Scientific Corporation(www.bostonscientific.eu). [10] Young, T., 1808, Hydraulic Investigations, Subservient to an Intended Croonian Lecture on the Motion of the Blood, Philos. Trans. R. Soc. Lond., 98: 164–186. [11] Milnor, W. R., 1989, Hemodynamics, 2nd Edition, William & Wilkins, 63-64, 95-97, 106-108. [12] Witzig, K., 1914, Uber Erzwungene Wellenbewegungen Zaber, Inkompressibler Flussigkeiten in Elastischen Rohren, Inaugural Dissertation, University of Bern. [13] Morgan, G. W. and Kiely, J. P., 1954, Wave Propagation in a Viscous Liquid Contained in a Flexible Tube, J. Acoust. Soc. Am., 26, 323-328. [14] Womersley, J. R., 1955, Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube - I: The Linear Approximation for Long Waves, Phil. Mag., (Ser. 7) 46,199-219. [15] Donnell, L. H., 1933, Stability of Thin Walled Tubes Under Torsion, NACA, Report No. 479. [16] Love, A. E. H., 1888, The Small Free Vibrations and Deformations of a Thin Elastic Shell, Phil. Trans. Roy. Soc., London, Ser. A, 179, pp. 491-549. [17] Jager, G., 1965, Electrical Model of the Human Systemic Arterial Tree, Doctoral Dissertation, University of Utrecht. [18] Mirsky, I., 1968, Wave Propagation in a Viscous Fluid Contained in an Orthotropic Elastic Tube, Biophys., J., 7, 165-186. [19] Klip, W., 1962, Velocity and Damping of the Pulse Wave, Martinus Nijhoff, The Hague. [20] Fung, Y. C., 1984, Biodynamics: Circulation, Chapter 12, Springer-Verlag, New York. [21] Gazis, D. C., 1959, Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical foundation. II. Numerical results., J. Acoust. Soc. Am., 31(5): 568–578. [22] Pochhammer, L., 1876, Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in unbegrenzten isotropen Kreiszylinder (On the Propagation Velocities of Small Vibrations in an Infinite Isotropic Cylinder), Zeitschrift f¨ur Reine und Angewandte Mathematik, 81, 324–336. (in German) [23] McNiven, H., Sackman, J. & Shah, A., 1963, Dispersion of Axially Symmetric Waves in Composite, Elastic Rods, J. Acoust. Soc. Am., 35(10): 1602–1609. [24] Sternberg, E., 1960, On the Integration of the Equations of Motion in the Classical Theory of Elasticity, Arch. Rat. Mech. Anal. 6,64-50 [25] Mirsky, I., 1965, Wave Propagation in Transversely Isotropic Circular Cylinders: Part I: Theory; Part II: Numerical Results, J. Acoust. Soc. Am., 37(6): 1016–1026. [26] Del Grosso, V. A., 1971, Analysis of Multimode Acoustic Propagation in Liquid Cylinders with Realistic Boundary Condition─Application to Sound Speed and Absorption Measurement, Acustica, Vol. 24, No. 6, pp.299-311 [27] Berliner, J., Solecki, R., 1996, Wave Propagation in a Fluid-Loaded, Transversely Isotropic Cylinders. Part I. Analytical Formulation; Part II. Numerical Results. J. Acoust. Soc. Am., 99, 1841–1853. [28] Rose, J L., 2004, 固体中的超声波[M]. 何存富, 吴斌, 王秀彦, 译. 北京: 科学出版社, 2004: 49―63. Rose, J L., Ultrasonic Waves in Solid Media [M], Translated by He Cunfu, Wu Bin, Wang Xiuyan. Beijing: Science Press, 2004: 49―63. [29] Buchen, P. W., and Ben-Hador, R., 1996, Free-Mode Surface-Wave Computations. Geophys. J. Int., 124, 869-887. [30] Ponnusamy, P., Rajagopal, M., 2010, Wave Propagation in a Transversely Isotropic Solid Cylinder of Arbitrary Cross-Sections Immersed in Fluid, European J. of Mech. A/Solids, Vol 29, pp.158-165. [31] Karpfinger, F., Valero, H.-P., Gurevich, B., Bakulin, A., Sinha, B., 2010, Spectral-Method Algorithm for Modeling Dispersion of Acoustic Modes in Elastic Cylindrical Structures, Geophysics, 75 (3): pp. H19-H27. [32] Karpfinger, F., Gurevich, B., Bakulin, A., 2008a, Computation of Wave Propagation Along Cylindrical Structures Using the Spectral Method, J. Acoust. Soc. Am., 124, 859–865. ───, 2008b, Modeling of Axisymmetric Wave Modes in a Poroelastic Cylinder Using Spectral Method, J. Acoust. Soc. Am., 124, EL230–EL235. [33] Hayashi, T., Kawashima, K., Sun, Z., and Rose, J. L., 2003, Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method, J. Acoust. Soc. Am., 113(3): 1241–1248. [34] 彭子桓,填充無黏性液體之彈性圓管聲傳研究,國立臺灣大學機械工程研究所碩士論文,中華民國一○三年七月 [35] Demiray, H., 1997, Wave in Initially Stressed Fluid-Filled Thick Tubes, J. Biomechanics, v30, n3, 273-276. [36] Achenbach, J. D., 1975, Wave Propagation in Elastic Solids, Chapter 2 and 6, Amsterdam, Elsevier: 202-261. [37] Kreyszig, E., 1999, Advanced Engineering Mathematics, 8th Edition, pp.475, John Wiley & Sons, Inc. [38] Graff, K., 1991, Wave Motion in Elastic Solids (Dover Books on Physics), Chapter 8.2, Dover Publications. [39] Ewing, W. M., Jardetzky, W. S., and Press, F., 1957, Elastic Waves in Layered Media, McGraw-Hill. [40] Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., 2000, Fundamentals of Acoustics, John Wiley & Sons, New York. [41] High Performance Computer Applications, 6th International Conference, ISUM 2015, Mexico City, Mexico, March 9-13, 2015, Revised Selected Papers, Chapter 38, ISUM 2015, Mexico City, Mexico, March 9-13, 2015: Revised Selected Papers, Editors: Gitler, Isidoro, Klapp, Jaime, Springer – 2016. [42] Shen, J., et al., 2011, Spectral Methods: Algorithms, Analysis and Applications, Chapter 3, DOI 10.1007/978-3-540-71041-71, Springer-Verlag, Berlin, Heidelberg. [43] Adamou, A. T. I., and Craster, R. V., 2004, Spectral methods for modelling guided waves in elastic media, J. Acoust. Soc. Am., 116, 1524–1535. [44] Weideman, J. A. C., and Reddy, S. C., 2000, A MATLAB Differentiation Matrix Suite, ACM Transactions on Mathematical Software, 26, 465–519. [45] Forouzandeh, F., Hajibozorgi, M., Meshkat, B., and Fatouraee, N., 2013, Measurement of Mechanical Properties of Human Saphenous Vein Using an Inflation Experiment, Proceedings of 20th Iranian Conference on Biomedical Engineering (ICBME), 115-119. [46] Cobbold, R. S. C., 2007, Foundations of Biomedical Ultrasound, Oxford University Press, New York. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18967 | - |
| dc.description.abstract | 為探究超音波對血管的影響,本文研究置於流體中的柔性管與流體之間交互作用的頻散現象與波傳模態。
根據Chebyshev-Gauss-Lobatto插值法與微分矩陣原理,採用Spectral數值方法離散彈性力學理論的波動方程,建立軸對稱縱向、非軸對稱周向和彎曲模態對應的廣義特徵值問題。此法克服Bessel函數的發散問題,成功解出頻譜、模態中各物理量的振形與質點軌跡圖。 第一、第二頻散曲線不論在低頻或高頻區域皆對應於彈性管表面波模態,分別為反對稱與對稱模態;第三、第四頻散曲線在兩相速度尚未收斂至相當接近的區域時,皆為管內外流體表面波模態,且在管面上流體振幅比管振幅大,沿兩頻散曲線移動,隨頻率增加兩相速度值逐漸靠近,第三頻散曲線最終收斂至管外流體表面波模態,第四頻散曲線收斂至管內流體表面波模態。 對應於EKOS的2MHz高頻模式,能量會集中在血管表面,血管內部振幅極小;而操作在45kHz的低頻模式時,血管內部會承受較大的振幅。因此以2MHz高頻模式操作對血管的傷害較低。 | zh_TW |
| dc.description.abstract | The wave propagation in flexible tubes immersed in fluid is studied in order to explore the effect of ultrasonic waves incident on blood vessels.
Based on Chebyshev-Gauss-Lobatto interpolation and differential matrix, spectral method discretizes the Helmholtz equation to establish generalized eigenvalue problems. These generalized eigenvalue problems are formulated for axial symmetric, circumferential, and bending modes respectively. The numerical method overcomes the divergent problem of Bessel functions and the spectrum, mode shapes, and motion of particles are found successfully. Mode shapes corresponding to the first and second dispersion curves display surface wave patterns of the tube in a very wide frequency range. The first dispersion curve gives antisymmetric modes while the second one offers symmetric modes. Before convergence, the third and fourth dispersion curves provide interface waves of fluid on both inside and outside of tubes. As frequency is increased, mode shapes corresponding to the third dispersion curve converge to surface waves of fluid outside the tube and that corresponding to the fourth dispersion curve converge to surface waves of fluid inside the tube. For EKOS operated at high frequency mode of 2MHz, surface wave modes will be excited most due to the ultrasonic source location. Therefore, the ultrasonic energy is mainly concentrated in the vicinity of vessel surface. When it is operated at low frequency mode of 45kHz, there is more ultrasonic energy penetrating into the vessel wall than that of 2MHz mode. That is, high frequency operation mode causes less damage to the vessel than low frequency operation mode. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:41:02Z (GMT). No. of bitstreams: 1 ntu-105-R03522538-1.pdf: 50985411 bytes, checksum: 8f2d0133f6f326fb155ec6f77c0933fb (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii ABSTRACT iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 第二章 多層介質波導的理論模型 9 2.1 管狀三層介質波導的理論模型 9 2.2 固體彈性管 11 2.3 流體介質 13 2.4 軸對稱縱向模態 14 2.5 周向波波傳 18 2.6 非軸對稱彎曲模態 21 第三章 Spectral 數值法 26 3.1 軸對稱縱向模態 27 3.2 周向波波傳 30 3.3 非軸對稱彎曲模態 34 3.4 原理說明 39 3.5 主體程序 47 第四章 圓管波導之頻譜 49 4.1 截止頻率 49 4.1.1 軸對稱縱向波 49 4.1.2 非軸對稱周向波 50 4.1.3 非軸對稱彎曲波 52 4.2 頻譜與模態振形 54 第五章 血管超音波應用 236 5.1 流固耦合模態 237 5.1.1 軸對稱縱向波模態數值結果 239 5.1.2 非軸對稱周向波模態數值結果 304 5.1.3 非軸對稱彎曲波模態數值結果 306 參考文獻 321 附錄A MATLAB程式碼 326 A.1 軸對稱縱向波主程序 326 A.2 非軸對稱周向波主程序 352 A.3 非軸對稱彎曲波主程序 375 | |
| dc.language.iso | zh-TW | |
| dc.subject | 振形 | zh_TW |
| dc.subject | 頻散曲線 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 血管 | zh_TW |
| dc.subject | 柔性管 | zh_TW |
| dc.subject | Mode shape | en |
| dc.subject | Dispersion curve | en |
| dc.subject | Ultrasonic wave | en |
| dc.subject | Blood vessel | en |
| dc.subject | Flexible tube | en |
| dc.title | 流體中柔性圓管之波傳研究 | zh_TW |
| dc.title | Wave Propagation in Flexible Tubes Immersed in Fluid | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊嘉揚(Jia-Yang Juang),劉建豪(Chien-Hao Liu) | |
| dc.subject.keyword | 柔性管,血管,超音波,頻散曲線,振形, | zh_TW |
| dc.subject.keyword | Flexible tube,Blood vessel,Ultrasonic wave,Dispersion curve,Mode shape, | en |
| dc.relation.page | 399 | |
| dc.identifier.doi | 10.6342/NTU201603241 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 49.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
