Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18958
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄
dc.contributor.authorYi-Hsuan Lien
dc.contributor.author李苡宣zh_TW
dc.date.accessioned2021-06-08T01:40:46Z-
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation[1] M. Fleischmann, P.J. Hendra, A.J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”. Chem. Phys. Lett. 26, 163 (1974)
[2] Procházka, Marek, “Surface-Enhanced Raman Spectroscopy:Bioanalytical, Biomolecular and Medical Applications” Springer International Publishing, 2016
[3] D.Y. Wu, J.F. Li, B. Ren, Z.Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures”, Chem. Soc. Rev. 37, 1025
[4] Y. Wang, N. Lu, W. Wang, L. Liu, L. Feng, Z. Zeng, H. Li, W. Xu, Z. Wu, W. Hu, Y. Lu, L. Chi, “Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays”, Nano Res. 6, 159 (2013)
[5] C.V. Raman, K.S. Krishnan, “A new type of secondary radiation”, Nature 121, 501 (1928)
[6] C.V. Raman, K.S. Krishnan, “A new class of spectra due to secondary radiation Part I”, Indian J. Phys. 2, 399 (1928)
[7] [2] Procházka, Marek, “Surface-Enhanced Raman Spectroscopy:Bioanalytical, Biomolecular and Medical Applications” Springer International Publishing, P9,2016
[8] D.J. Jeanmaire, R.P. Van Duyne, “Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, J. Electroanal. Chem. 84, 1 (1977)
[9] S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications”, Angew.Chem. Int. Ed. 53, 4756 (2014)
[10] A.G. Brolo, D.E. Irish, B.D. Smith, “Applications of surface enhanced Raman scattering to the study of metal-adsorbate intractions”, J. Mol. Struct. 405, 29 (1997)
[11] A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering”, J. Raman Spectrosc. 36, 497 (2005)
[12] M.G. Albrecht, J.A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver surface”, J. Am. Chem. Soc. 99, 5215 (1977)
[13] P.C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols”, J. Phys. Chem. 86, 3391
[14] N. Leopold, B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride”, J. Phys. Chem. B 107, 5723 (2003)
[15] R.F. Aroca, R.A. Alvarez-Puebla, N. Pieczonka, S. Sánchez-Cortés, J.V. García-Ramos, “Surface-enhanced Raman scattering on colloidal nanostructures”, Adv. Colloid Interface Sci.116, 45 (2005)
[16] R.G. Freeman, R.M. Bright, M.B. Hommer, M.J. Natan, “Size selection of colloidal gold aggregates by filtration: effect on surface-enhanced Raman scattering intensities”, J. Raman Spectrosc. 30,733 (1999)
[17] M. Fan, G.F.S. Andrade, A.G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry”, Anal. Chim. Acta693, 7 (2011)
[18] J.K. Daniels, G. Chumanov, “Nanoparticle-Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering”, Journal of Physical Chemistry B 109 (2005) 17936
[19] Li, J.F., Y., F. Huang, Y. Ding, Z. 1. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Z., Ren, 1. Wang, and Z. Q. Tian, “Shell-Isolated NanoparticleEnhanced Raman Spectroscopy”, Nature, 464, 392 (2010).
[20] Y.H. Jang, K. Chung, L.N. Quan, B. Špačková, H. Šípová, S. Moon, W.J. Cho, H.Y. Shin, Y.J. Jang, J.E. Lee, S.T. Kochuveedu, M.J. Yoon, J. Kim, S. Yoon, J.K. Kim, D. Kim, J. Homola, D.H. Kim, “Configuration-controlled Au nanocluster arrays on inverse micelle nano patterns: versatile platforms for SERS and LSPR sensors”, Nanoscale 5, 12261 (2013)
[21] X. Zhang, H. Chen, H. Zhang, “Layer-by-layer assembly: from conventional to unconventional methods”, Chem. Commun. 14, 1395 (2007)
[22] Q. Yu, P. Guan, D. Qin, G. Golden, P.M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays”, Nano Lett. 8, 1923 (2008)
[23] 傅淑娟、郭明澤、林其昌, “表面增強拉曼光譜在生醫檢測之發展”, 化工(第61卷第5期) , 2014
[24]R. W. Wood, Philos. Mag. 4, 396 (1902).
[25] 邱國斌、蔡定平,“金屬表面電漿簡介”, 物理雙月刊(廿八卷二期), 2006年4月
[26] 吳民耀、劉威志,“表面電漿子理論與模擬”, 物理雙月刊(廿八卷二期), 2006年4月
[27] Yu-Tai Tao, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the Surfaces of Silver, Copper, and Aluminum”, J . Am. Chem. SOC.1993,115, 4350-4358
[28] Mustafa Culha, David Stokes, Leonardo R. Allain, and Tuan Vo-Dinh, ” Surface-Enhanced Raman Scattering Substrate Based on a Self-Assembled Monolayer for Use in Gene Diagnostics”, Anal. Chem. 2003, 75, 6196-6201
[29] Y.J. Kwon, D.H. Son, S.J. Ahn, M.S. Kim, K. Kim, “ Vibrational Spectroscopic Investigation of Benzoic Acid Adsorbed on Silver”, J. Phys. Chem. 98 (1994) 8481–8487.
[30] M. PAGANNONE et al.” Molecular structure and orientation of chemisorbed aromatic carboxylic acids: surface enhanced Raman spectrum of benzoic acid adsorbed on silver sol.” Spscwochimrca Acre. Vol. 43A, No. 5, pp. 62 I-625, 1987
[31] B.G Frederick et al.”Orientation and bonding of benzoic acid, phthalic anhydride and pyromellitic dianhydride on Cu( 110).” Surface Science 292 (1993133-46)
[32] 張三慧.“大學物理學 熱學、光學、量子物理(第三版)B版”, 清華大學出版社. 2009-02: 250
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18958-
dc.description.abstract表面增強拉曼散射是改善拉曼散射強度不足的方法之一,而表面增強拉曼散射之所以能改善的原因有二:利用電磁場增強的方法、與利用電荷轉移增強效應。其中電磁場增強的效果比電荷轉移的效果強上許多,因此許多科學家致力於這方面的研究。若要使電磁場增強,則拉曼的基板製備就會是一個很重要的課題。隨著奈米材料製備技術的成熟,各種基板不斷發展,但都以增強表面電漿子共振為主,形貌上屬於球狀、針尖狀、直接蒸鍍金屬等。本論文欲以光捕捉之光學基板為主,製作一週期性一維光柵基板。因一維光柵的具有調變光的振幅與相位的特性,讓光能在光柵中來回傳遞,達到共振效果,使訊號放大。我們以電子束微影系統搭配乾蝕刻技術,製作相同深度但不同週期與工作週期的光柵結構,並以苯甲酸作為待測藥品,得到最佳的訊號增強光柵結構。我們也討論入射雷射的偏振對訊號強度的影響,佐證我們的光柵結構應用於表面增強拉曼散射時,其訊號增強原因屬於光學表現。zh_TW
dc.description.abstractSurface Enhanced Raman Scattering (SERS) is one of the methods to improve the weakness of Raman Spectrum. The mechanisms that makes SERS improve the signal intensity are: the electric field enhancement and the carrier transmission enhancement. According to the fact that electric field effect can provide a stronger enhancement than the chemical effect, numerous scientists commence to do a lot of research on the electric field effect of SERS.
If the electric field effect is going to be implemented to enhance the Raman Intensity, solving the problem of the SERS-active substrate is a necessity. As the nano technique matures, various types of SERS-active substrates are fabricated. Nevertheless, most of substrates, which is designed for the enhancement of surface plasmon effect, are sphere liked, tip liked and metal evaporated. Therefore, this thesis would like to use one-dimensional grating as the pattern of our periodically structured SERS substrate.
Grating can modulate the amplitude and the phase of incident light, leading to the light be trapped and resonate between two gratings, and consequently contributing to the signal enhancement. We utilized E-beam lithography system with dry etching method for the fabrication of precise grating pattern. After that, a SERS substrate with different period and grating duty cycle is obtained.
As a result, we chose benzoic acid as the analyte because it is the typical model of aromatic carboxylic and common preservative in food safety problem. We also demonstrated that by changing the polarization of incident laser, the SERS intensity became weak when the mode is shifted from TE to TM. Conclusively, we proposed a special designed grating account for the enhancement effect in SERS.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:40:46Z (GMT). No. of bitstreams: 1
ntu-105-R03945031-1.pdf: 2370269 bytes, checksum: 3c4c57c32c5cfb91620a6678048e1e40 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 概論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 理論與文獻回顧 4
2-1 拉曼光譜學原理簡介 4
2-2 表面增強拉曼散射原理簡介 5
2-3 表面增強拉曼散射基板 7
2.4 表面電漿子與線性極化電磁波 9
2.5 自組裝單層薄膜介紹 10
2.6 苯甲酸的表面增強拉曼散射光譜簡介 12
2.7 布魯斯特角 14
第三章 實驗儀器與樣品製備 15
3.1 製程/量測儀器簡介 15
3.1.1 電子束微影系統(Electron Beam Lithography) 15
3.1.2 電子槍蒸鍍系統(E-Gun) 17
3.1.3 反應式離子蝕刻機(Reactive Ion Etching) 18
3.1.4 掃描式電子顯微鏡(SEM) 19
3.1.5 微拉曼光譜量測系統(µ-Raman) 20
3.2 樣品製備 22
3.2.1 苯甲酸溶液製備 22
3.2.2 塗佈苯甲酸溶液於基板 22
3.2.3 基板製備 25
第四章 實驗結果與討論 30
4.1 實驗設計 30
4.2 量測分析 31
4.2.1 拉曼量測分析與比較-第一部分 31
4.2.2 拉曼量測分析與比較-第二部分 34
4.3 量測結果與討論 37
4.3.1 不同金屬光柵的拉曼增強與金屬光柵結構SEM圖 37
4.3.2 光柵結構之反射光譜與訊號增強原因 38
4.3.2 TE波與TM波的拉曼雷射偏振對光柵的分析與比較 41
第五章 結論與未來展望 44
參考文獻 45
dc.language.isozh-TW
dc.subject週期性結構基板zh_TW
dc.subject表面增強拉曼散射zh_TW
dc.subject拉曼光譜zh_TW
dc.subject光捕捉zh_TW
dc.subject電子束微影zh_TW
dc.subjectSurface Enhanced Raman Scatteringen
dc.subjectLight Trappingen
dc.subjectPeriodically Structured substrateen
dc.subjectRaman Spectroscopyen
dc.subjectElectron-Beam Lithographyen
dc.title發展週期性結構表面增強拉曼散射基板及其高靈敏分子檢測應用zh_TW
dc.titleDevelopment of periodically structured SERS substrates and its application to ultra-sensitive molecular detectionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳啟東,孫建文,孫允武,徐大正
dc.subject.keyword表面增強拉曼散射,拉曼光譜,週期性結構基板,光捕捉,電子束微影,zh_TW
dc.subject.keywordSurface Enhanced Raman Scattering,Raman Spectroscopy,Periodically Structured substrate,Light Trapping,Electron-Beam Lithography,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201603144
dc.rights.note未授權
dc.date.accepted2016-08-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved