請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18937
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾國芳(Kou-Fang Chung) | |
dc.contributor.author | Hsin-Huei Huang | en |
dc.contributor.author | 黃馨卉 | zh_TW |
dc.date.accessioned | 2021-06-08T01:40:14Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-21 | |
dc.identifier.citation | 小笠原憲四郎, & 植村和彥. (2006). 日本列島ソ生ゆ立グシ動植物相ソ由來. In 日本國立科學博物館, 日本列島ソ自然史 (pp. 60–78). 神奈川: 東海大學出版會.
王震哲. (1997). 臺灣產百合科之細胞分類研究 (II) 黃精族及油點草族. 台北. 平朝彥. (1990). 日本列島ソ誕生. 岩波書店. 村田源, & 小山博滋. (1976). 襲速紀要素ズコゆサ. Memoirs of the National Museum of Nature and Science, 9, 111–121. 村田源, & 小山博滋. (1980). 襲速紀地域メ中心シウギ日本太平洋側и①ьソ特性ズコゆサ. Memoirs of the National Museum of Nature and Science, 13, 155–168. 門田裕一. (2006). 日本ザ分化ウギ植物. In 日本國立科學博物館, 日本列島ソ自然史 (pp. 147–160). 神奈川: 東海大學出版會. 高橋弘. (1976). оЬЬヰЗ屬ソ研究 2. 台湾産оЬЬヰЗ屬ズコゆサ. Acta Phytotaxonomica et Geobotanica, 27(5-6), 169–173. 高橋弘. (1987). оЬЬヰЗ_屬ソ分布シ植物地理学的問題. Acta Phytotaxonomica et Geobotanica, 38, 123–132. 彭仁傑, & 許再文. (2005). 毛果油點草對乾旱環境之適應. 自然保育季刊, 41, 56–59. 楊遠波, 劉和義, & 林讚標. (2001). 臺灣維管束植物簡誌 第五卷. 台北: 中華民國行政院農業委員會. 篠遠喜人, & 吉川涼. (1932). оЬЬヰЗ屬植物ソ遺傳學的細胞學的研究 其一、оЬЬヰЗ屬植物ソ染色體 (豫報). The Japanese Journal of Genetics, 7(4), 194–198. 篠遠喜人, & 佐藤重平. (1942a). Уユ③⑦оЬЬヰЗソ倍數體シ異數體. Japanese Journal of Genetics, 18, 88–90. 篠遠喜人, & 佐藤重平. (1942b). оЬЬヰЗシУユ③⑦оЬЬヰЗシソ雑種ソ基本核型分析. Japanese Journal of Genetics, 18, 90–91. 應紹舜. (1988). 臺灣高等植物彩色圖誌 第三卷. 台北: 應紹舜. Bell, C. D., Soltis, D. E., & Soltis, P. S. (2010). The age and diversification of the angiosperms re-revisited. American Journal of Botany, 97(8), 1296–303. doi:10.3732/ajb.0900346 Bremer, K. (2000). Early Cretaceous lineages of monocot flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4707–11. doi:10.1073/pnas.080421597 Cameron, K. M. (2005). Leave it to the leaves: a molecular phylogenetic study of Malaxideae (Epidendroideae, Orchidaceae). American Journal of Botany, 92(6), 1025–32. doi:10.3732/ajb.92.6.1025 Cameron, K. M., & Fu, C. (2006). A nuclear rDNA phylogeny of Smilax (Smilaceae). Aliso, 22, 598–605. Carta, A., & Peruzzi, L. (2016). Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in Liliaceae. The New Phytologist, 210(2), 709–16. doi:10.1111/nph.13769 Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659. doi:10.1046/j.1365-294x.2000.01020.x Cota-Sánchez, J. hugo, Remarchuk, K., & Ubayasena, K. (2006). Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter, 24, 161–167. Cronquist, A. (1968). The Evolution and Classification of Flowering Plants. Boston: Houghton Mifflin Company. Dahlgren, R. M. T., Clifford, H. T., & Yeo, P. F. (1985). The Families of the Monocotyledons. Springer-Verlag. de Queiroz, A., & Gatesy, J. (2007). The supermatrix approach to systematics. Trends in Ecology & Evolution, 22(1), 34–41. doi:10.1016/j.tree.2006.10.002 Don, D. (1825). Prodromus florae Nepalensis. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), 699–710. doi:10.1371/journal.pbio.0040088 Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. doi:10.1186/1471-2148-7-214 Enghoff, H. (1995). Historical biogeography of the holarctic: Area relationships, ancestral areas, and dispersal of non-marine animals. Cladistics, 11(3), 223–263. doi:10.1016/0748-3007(95)90014-4 Engler, A. (1954). Fam. Liliaceae. In A. Engler (Ed.), Syllabus der Pflanzenfamilien 2nd Edn. (pp. 515–524). Berlin: Borntraeger. Fay, M. F., Chase, M. W., R?nsted, N., Devey, D. S., Pillon, Y., Pires, J. C., Davis, J. I. (2006). Phylogenetics of Liliales: Summarized evidence from combined analyses of five plastid and one mitochondrial loci. Aliso, 22, 559–565. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376. doi:10.1007/BF01734359 Fiedler, P. L., & Zebell, R. K. (2002). <i/>Calochortus<i>. In Flora of America, Vol. 26 (pp. 15, 51, 57, 119). New York & Oxford. Flores, R. A. Q. (1997). Determinaation of the rank and position of a species of Tricyrtis. Goldberg, A. (1989). Classification, evolution and phylogeny of the families of Monocotyledons. Smithsonian Contributions to Botany, 71, 1–74. Good, R. (1953). The Geography of the Flowering Plants. London: Longmans, Green & Co. Greenwood, D. R., & Conran, J. G. (2000). The Australian Cretaceous and Tertiary monocot fossil record. In Monocots: Systematics and Evolution (pp. 52–59). Greuter, W. (1981). XIII International Botanical Congress: Mail Vote and Final Congress Action on Nomenclature Proposals. Taxon, 30(4), 904–911. Gutierrez, H. G. (1974). Tricyrtis imeldea, a new Philippine lily. Philippine Journal of Science, 103, 171–173. Hall, R. (1998). The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. Biogeography and Geological Evolution of SE Asia, 99–131. Hennig, W. (1966). Phylogenetic Systematics. Urbana: University of Illinois Press. Henry, A. (1896). A list of plants from Formosa. Transactions of the Asiatic Society of Japan, 24, 1–118. Hillis, D. M., & Bull, J. J. (1993). An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis. Systematic Biology, 42(2), 182–192. doi:10.1093/sysbio/42.2.182 Hinchliff, C. E., & Roalson, E. H. (2013). Using supermatrices for phylogenetic inquiry: an example using the sedges. Systematic Biology, 62(2), 205–19. doi:10.1093/sysbio/sys088 Hong, S. W.-P., & Jury, S. L. (2011). Phylogeny and divergence times inferred from rps16 sequence data analyses for Tricyrtis (Liliaceae), an endemic genus of north-east Asia. AoB Plants, 2011, plr025. doi:10.1093/aobpla/plr025 Hong, S. W.-P., & Jury, S. L. (2012). Phylogeny and molecular evolution of Tricyrtis (Liliaceae s.l.) inferred from plastid DNA matK spacer nucleotide sequences. Journal of Plant Studies, 1(2), 1–10. doi:10.5539/jps.v1n2p1 Huang, S. F. (2014). Hypothesizing origin, migration routes and distribution patterns of gymnosperms in Taiwan. Taiwania, 59(2), 139–163. doi:10.6165/tai.2014.59.139 Huang, S. S. F., Hwang, S.-Y., & Lin, T.-P. (2002). Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Molecular Ecology, 11(11), 2349–58. Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science (New York, N.Y.), 294(5550), 2310–4. doi:10.1126/science.1065889 Hutchinson, J. (1973). Liliaceae. In The Families of Flowering Plants 3rd Edn. (3rd ed., pp. 732–753). Oxford: Clarendon Press. Ibrahim, R. I. H. (2011). A modified CTAB protocol for DNA extraction from young flower petals of some medicinal plant species. Geneconserve, 10(40), 165–182. Jessop. (1979). Liliaceae. In Flora Malesiana Ser.I Vol.9 Part.1 (pp. 189–235). Jianfei, Y., Zhiduan, C., Bing, L., Haining, Q., & Yong, Y. (2013). Disjunct distribution of vascular plants between southwestern area and Taiwan area in China (in Chinese.). Biodiversity Science, 20(4), 482–494. doi:10.3724/SP.J.1003.2012.13056 Kikuchi, R., Jae-Hong, P., Takahashi, H., & Maki, M. (2010). Disjunct distribution of chloroplast DNA haplotypes in the understory perennial Veratrum album ssp. oxysepalum (Melanthiaceae) in Japan as a result of ancient introgression. The New Phytologist, 188(3), 879–91. doi:10.1111/j.1469-8137.2010.03398.x Kim, J. S., Hong, J., Chase, M. W., Fay, M. F., & Kim, J. (2013). Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci : matK , rbcL , atpB and atpF - H. Botanical Journal of the Linnean Societyinnean Society, 172, 5–21. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/boj.12039/abstract Kim, J. S., Kim, J.-H., Rivas, J., Lozano, J., Ortiz, A., Haberle, R., … Lao, N. (2013). Comparative Genome Analysis and Phylogenetic Relationship of Order Liliales Insight from the Complete Plastid Genome Sequences of Two Lilies (Lilium longiflorum and Alstroemeria aurea). PLoS ONE, 8(6), e68180. doi:10.1371/journal.pone.0068180 Kimura, M. (1962). On the probability of fixation of mutation genes in a population. Genetics, 47(6), 713–719. Kitakawa, M., & Koyama, T. (1958). Concerning the variants of Tricyrtis macrantha Maxim. Journal of Japanese Botany, 33(8), 251–255. Kitamura, A., & Kimoto, K. (2004). Reconstruction of the Southern Channel of the Japan Sea at 3.9-1.0Ma. The Quaternary Research (Daiyonki-Kenkyu), 43(6), 417–434. doi:10.4116/jaqua.43.417 Koidzumi, G. (1924). Contributiones ad Cognitionem Florae Asiae Orientalis. The Botanical Magazine, 38, 87–113. doi:10.1017/CBO9781107415324.004 Kokubugata, G., Nakamura, K., Forster, P. I., Hirayama, Y., & Yokota, M. (2012). Antitropical distribution of Lobelia species (Campanulaceae) between the Ryukyu Archipelago of Japan and Oceania as indicated by molecular data. Australian Journal of Botany, 60(5), 417. doi:10.1071/BT11316 Kono, Y., Peng, C., Chao, C., & Oginuma, K. (2015). Karyomorphological study of Taiwanese Tricyrtis ( Liliaceae ) and the taxonomic implication. Chromosome Botany, 10, 61–66. Lahaye, R., Savolainen, V., Duthoit, S., Maurin, O., & van der Bank, M. (2008). A test of psbK-psbI and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park (South Africa) as a model system. Lee, J.-H., Lee, D.-H., & Choi, B.-H. (2013). Phylogeography and genetic diversity of East Asian Neolitsea sericea (Lauraceae) based on variations in chloroplast DNA sequences. Journal of Plant Research, 126(2), 193–202. doi:10.1007/s10265-012-0519-1 Lee, S., & Maki, M. (2013). Comparative phylogeographic study of Hosta sieboldiana and Hosta albomarginata (Asparagaceae) in Japan. Ecology and Evolution, 3(14), 4767–85. doi:10.1002/ece3.838 LIAO, C.-Y., DOWNIE, S. R., YU, Y., & HE, X.-J. (2012). Historical biogeography of the Angelica group (Apiaceae tribe Selineae) inferred from analyses of nrDNA and cpDNA sequences. Journal of Systematics and Evolution, 50(3), 206–217. doi:10.1111/j.1759-6831.2012.00182.x Lin, C. C. (1963). Geology and Ecology of Taiwan Prehistory. Asian Perspective, 7. Liu, T.-S., & Ying, S.-S. (1978). Tricyrtis. In Flora of Taiwan, Vol.5 (pp. 78–82). Lu, S.-Y., Hong, K.-H., Liu, S.-L., Cheng, Y.-P., Wu, W.-L., & Chiang, T.-Y. (2002). Genetic variation and population differentiation of Michelia formosana (Magnoliaceae) based on cpDNA variation and RAPD fingerprints: relevance to post-Pleistocene recolonization. Journal of Plant Research, 115(3), 203–16. doi:10.1007/s102650200026 Ma, D.-D., Chen, Z.-H., Li, G.-Y., Zhu, Z.-M., Zhang, R.-Z., & Peng, J.-L. (2014). Tricyrtis xianjuensis (Liliaceae), a new species from eastern China. Annales Botanici Fennici, 51, 217–221. Mäder, G., Zamberlan, P. M., Fagundes, N. J. R., Magnus, T., Salzano, F. M., Bonatto, S. L., & Freitas, L. B. (2010). The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae). Genetics and Molecular Biology, 33(1), 99–108. doi:10.1590/S1415-47572009005000101 Maki, M., Morita, H., Oiki, S., & Takahashi, H. (1999). The effect of geographic range and dichogamy on genetic variability and population genetic structure in Tricyrtis section Flavae (Liliaceae). American Journal of Botany, 86(2), 287–292. Masamune, G. (1930). Contribution to our Knowledge of the Flora of the Southern Part of Japan. I. Journal of the Society of Tropical Agricalture, 2(1), 29–54. Masamune, G. (1931). Contribution to our Knowledge of the Flora of the Southern Part of Japan. IV. Journal of the Society of Tropical Agricalture, 3(1), 20–23. Mathew, B. (1985). A Review of the Genus Tricyrtis. The Plantsman, 6(4), 193–244. Matsumura, J. (1897). Two new species of Tricyrtis from Formosa. Botanical Magazine, 11(130), 78–79. Milne, R. I., & Abbott, R. J. (2002). The origin and evolution of tertiary relict floras. Advances in Botanical Research, 38, 281–314. doi:10.1016/S0065-2296(02)38033-9 Mitsui, Y., Chen, S.-T., Zhou, Z.-K., Peng, C.-I., Deng, Y.-F., & Setoguchi, H. (2008). Phylogeny and biogeography of the genus Ainsliaea (Asteraceae) in the Sino-Japanese region based on nuclear rDNA and plastid DNA sequence data. Annals of Botany, 101(1), 111–24. doi:10.1093/aob/mcm267 Mitsui, Y., & Setoguchi, H. (2012). Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci. BMC Evolutionary Biology, 12, 254. doi:10.1186/1471-2148-12-254 Nakamura, K., Chung, K.-F., Huang, C.-J., Kono, Y., Kokubugata, G., & Peng, C.-I. (2012). Extreme habitats that emerged in the Pleistocene triggered divergence of weedy Youngia (Asteraceae) in Taiwan. Molecular Phylogenetics and Evolution, 63(2), 486–99. doi:10.1016/j.ympev.2012.01.023 Nakamura, K., Denda, T., Kokubugata, G., Huang, C.-J., Peng, C.-I., & Yokota, M. (2014). Phylogeny and biogeography of the Viola iwagawae-tashiroi species complex (Violaceae, section Plagiostigma) endemic to the Ryukyu Archipelago, Japan. Plant Systematics and Evolution, 301(1), 337–351. doi:10.1007/s00606-014-1076-y Nakamura, K., Denda, T., Kokubugata, G., Suwa, R., Aleck Yang, T. Y., Peng, C.-I., & Yokota, M. (2010). Phylogeography of Ophiorrhiza japonica (Rubiaceae) in continental islands, the Ryukyu Archipelago, Japan. Journal of Biogeography, no–no. doi:10.1111/j.1365-2699.2010.02342.x Nixon, K. (1999). The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics, 15(4), 407–414. doi:10.1006/clad.1999.0121 Ohki, N., & Setoguchi, H. (2013). New microsatellite markers for Tricyrtis macrantha (Convallariaceae) and cross-amplification in closely related species. Applications in Plant Sciences, 1(5), 1200247. doi:10.3732/apps.1200247 Olmstead, R. G., & Palmer, J. D. (1994). Chloroplast DNA systematics: A review of methods and data analysis. American Journal of Botany, 81(9), 1205–1224. Retrieved from http://www.jstor.org/stable/2445483 Ota, H. (1998). Geographic patterns of endemism and speciation in amphibians and reptiles of the Ryukyu Archipelago , Japan , with special reference to their paleogeographical implications. Researches on Population Ecology, 40(2), 189–204. Patterson, T. B., & Givnish, T. J. (2002). Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution, 56, 233–252. Patterson, T. B., & Givnish, T. J. (2002). Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution; International Journal of Organic Evolution, 56(2), 233–52. Patterson, T. B., & Givnish, T. J. (2003). Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytologist, 161(1), 253–264. doi:10.1046/j.1469-8137.2003.00951.x Pelser, P. B., Barcelona, J. F., & Nickrent, D. L. (2011). Co’s Digital Flora of the Philippines. Retrieved from www.philippineplants.org Peng, C.-I., Tiang, C.-L., & Hsu, T.-W. (2007). Tricyrtis ravenii ( Liliaceae ), a new species from Taiwan. Botanical Studies, 48, 357–364. Peruzzi, L. (2016). A new infrafamilial taxonomic setting for Liliaceae, with a key to genera and tribes. Plant Biosystems. doi:10.1080/11263504.2015.1115435 Peruzzi, L., Leitch, I. J., & Caparelli, K. F. (2009). Chromosome diversity and evolution in Liliaceae. Annals of Botany, 103(3), 459–75. doi:10.1093/aob/mcn230 Petersen, G., Seberg, O., & Davis, J. I. (2013). Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics, 29(3), 274–295. doi:10.1111/j.1096-0031.2012.00427.x Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15. doi:10.1007/BF02772108 Qi, X.-S., Yuan, N., Comes, H. P., Sakaguchi, S., & Qiu, Y.-X. (2014). A strong “filter” effect of the East China Sea land bridge for East Asia’s temperate plant species: inferences from molecular phylogeography and ecological niche modelling of Platycrater arguta (Hydrangeaceae). BMC Evolutionary Biology, 14(1), 41. doi:10.1186/1471-2148-14-41 Qiu, Y.-X., Qi, X.-S., Jin, X.-F., Tao, X.-Y., Fu, C.-X., Akiyo Naiki, & Comes, H. P. (2009). Population Genetic Structure, Phylogeography, and Demographic History of Platycrater arguta (Hydrangeaceae) Endemic to East China and South Japan, Inferred from Chloroplast DNA Sequence Variation on JSTOR. Taxon, 58(4), 1226–1241. Qiu, Y.-X., Sun, Y., Zhang, X.-P., Lee, J., Fu, C.-X., & Comes, H. P. (2009). Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to quaternary climate change and landbridge configurations. The New Phytologist, 183(2), 480–95. doi:10.1111/j.1469-8137.2009.02876.x Reveal, J. L. (1998). (1336-1337) Proposals to conserve the names Tricyrtidaceae and Walleriaceae (Magnoliophyta). Taxon, 47, 173. Rickett, H. W., & Stafleu, F. A. (1959). Nomina generica conservanda et rejicienda spermatophytorum. Taxon, 8(7), 213–243. Robinson, G. W. (1938). New plants for the rock garden. Journal of the Royal Horticultural Society, 63, 307–314. Ronquist, F. (1997). Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography. Systematic Biology, 46(1), 195–203. doi:10.1093/sysbio/46.1.195 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–42. doi:10.1093/sysbio/sys029 R?nsted, N., Law, S., Thornton, H., Fay, M. F., & Chase, M. W. (2005). Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Molecular Phylogenetics and Evolution, 3, 509–527. Sahu, S. K., Thangaraj, M., & Kathiresan, K. (2012). DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Molecular Biology, 1–6. doi:10.5402/2012/205049 Sato, D. (1939). Cyto-genetical studies on Tricyrtis, II. Karyotype analysis in Tricyrtis and Brachycyrtis with special reference to SAT and nucleolar chromosomes. Cytologia, 10, 127–158. Setoguchi, H., Mitsui, Y., Ikeda, H., Nomura, N., & Tamura, A. (2008). Development and characterization of microsatellite loci in the endangered Tricyrtis ishiiana (Convallariaceae), a local endemic plant in Japan. Conservation Genetics, 10(3), 705–707. doi:10.1007/s10592-008-9620-3 Setoguchi, H., Mitsui, Y., Ikeda, H., Nomura, N., & Tamura, A. (2010). Genetic structure of the critically endangered plant Tricyrtis ishiiana (Convallariaceae) in relict populations of Japan. Conservation Genetics, 12(2), 491–501. doi:10.1007/s10592-010-0156-y Setoguchi, H., Yukawa, T., Tokuoka, T., Momohara, A., Sogo, A., Takaso, T., & Peng, C.-I. (2006). Phylogeography of the genus Cardiandra based on genetic variation in cpDNA sequences. Journal of Plant Research, 119(4), 401–5. doi:10.1007/s10265-006-0283-1 Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., … Small, R. L. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92(1), 142–166. Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007a). Comparison of whole chloroplast genome sequence to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94(3), 275–288. Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007b). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94(3), 275–88. doi:10.3732/ajb.94.3.275 Shimizu, T. (1961). A note on Tricyrtis of Taiwan. Botanical Bulletin of Academia Sinica, 3, 35–37. Shinwari, Z. K., Kato, H., & Terauchi, R. (1994). Phylogenetic relationships among genera in the Liliaceae-Asparagoideae-Polygonatae s.l. inferred from rbcL gene sequence data. Plant Systematics and Evolution, 192, 263–277. Simmons, M. P., Pickett, K. M., & Miya, M. (2004). How Meaningful Are Bayesian Support Values? Molecular Biology and Evolution, 21(1), 188–199. doi:10.1093/molbev/msh014 Sino-Japanese flora its characteristics and diversification. (1998). Tokyo: University Museum, University of Tokyo,. Sinoto, Y., & Sato, D. (1942a). Cyto-genetical studies on Tricyrtis, III. Polybasic forms in T. formosana. Cytologia, 12, 289–302. Sinoto, Y., & Sato, D. (1942b). Cyto-genetical studies on Tricyrtis, IV. Basikaryotype analysis in hybrids of T. hirta and T. formosana. Cytologia, 12, 302–312. Retrieved from Smith, S. Y. (2013). The fossil record of noncommelinid monocots. In Early Events in Monocot Evolution (pp. 29–59). Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22(21), 2688–90. doi:10.1093/bioinformatics/btl446 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England), 30(9), 1312–3. doi:10.1093/bioinformatics/btu033 Stevens, P. F. (2016). ANGIOSPERM PHYLOGENY WEBSITE, version 13. Sun, Z., & Dilcher, D. (1988). Fossil smilax from eocene sediments in western Tennessee. American Journal of Botany, 75(6), 118. Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5), 1105–9. Takahashi, H. (1980). A Taxonomic Study on the Genus Tricyrtis. Science Report of the Faculty of Education, Gifu University (Natural Science), 6(4), 589–642. Takahashi, H. (1984). The floral biology ot Tricyrtis latifolia Maxim. (Liliaceae). The Botanical Magazine, Tokyo, 97, 207–217. Takahashi, H. (1987a). A comparative floral and pollination biology of Tricyrtis flava Maxim., T. nana Yatabe and T. ohsumiensis Masamune (Liliaceae). The Botanical Magazine, Tokyo, 100, 185–203. Takahashi, H. (1987b). Distribution of Tricyrtis and its phytogeograpical problems. Acta Phytotaxonomica et Geobotanica, 38, 123–133. Takahashi, H. (1998). Pollination Biology of Tricyrtis perfoliata Masamune (Liliaceae). Memoirs of the National Science Museum, Tokyo, 30, 58–63. Takahashi, H., Qin, X.-K., Hao, S.-J., & Konta, F. (1998). Morphology and taxonomic ststus of Tricyrtis viridula (Liliaceae). Bulletin of the National Science Museum. Series B, Botany, 24(2), 53–60. Retrieved from http://ci.nii.ac.jp/naid/110000008465/en Takahashi, Y., & Maki, M. (2007). Isolation and characterization of microsatellite loci in the threatened wild toad lily Tricyrtis flava (Liliaceae). Molecular Ecology Notes, 7(6), 1299–1301. doi:10.1111/j.1471-8286.2007.01861.x Takahashi, Y., Takahashi, H., & Maki, M. (2011). Comparison of genetic variation adn differentiation using microsatellite markers among three rare threatened and one widespread toad lily species of Tricyrtis section Flavae (Convallariaceae) in Japan. Plant Species Biology, 26, 13–23. Takhtajan, A. (1969). Flowering Plants Origin and Dispersal. Edinbrugh: Oliver & Boyd LTD. Takhtajan, A. L. (1997). Diversity and Classification of Flowering Plants. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–9. doi:10.1093/molbev/msr121 Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–9. doi:10.1093/molbev/mst197 Tamura, M. N. (1998a). Calochortaceae. In K. Kubitzki (Ed.), The Families and Genera of Vascular Plants III. (pp. 164–172). Berlin: Springer-Verlag. Tamura, M. N. (1998b). Liliaceae. In K. Kubitzki (Ed.), The Families and Genera of Vascular Plants III. (pp. 343–353). Berlin: Springer-Verlag. Tanaka, N. (2012). Taxomic revision and diverification of the genus Tricyrtis (Liliaceae). Makinoa New Series, 10, 1–152. Tetsuo, O. H., Kajita, T., & Murata, J. (2003). Distinct geographic structure as evidenced by chloroplast DNA haplotypes and ploidy level in Japanese Aucuba (Aucubaceae). American Journal of Botany, 90(11), 1645–1652. doi:10.3732/ajb.90.11.1645 Thorne, R. F. (1992). Classification and geography of the flowering plants. The Botanical Review, 58(3), 225–328. Thorne, R. F., & Reveal, J. L. (2007). An update classification of the class Magnliopsida (“Angiospermae”). The Botanical Review, 73(2), 67–183. Tiffney, B. H., & Manchester, S. R. (2001). The Use of Geological and Paleontological Evidence in Evaluating Plant Phylogeographic Hypotheses in the Northern Hemisphere Tertiary Author ( s ): Bruce H . Tiffney and Steven R . Manchester Source : International Journal of Plant Sciences , Vol . 162 ,. International Journal of Plant Sciences, 162, S3–S17. Vinnersten, A., & Bremer, K. (2001). Age and biogeography of major clades in Liliales. American Journal of Botany, 88(9), 1695–1703. doi:10.2307/3558415 Voss, E. G., & Greuter, W. (1981). Synopsis of Proposals on Botanical Nomenclature Sydney 1981. Taxon, 30(1), 95–293. Wallich, N. (1826). Tentamen Floræ Napalensis Illustratæ: consisting of botanical description and lithographic figures of select Nipal plants. Asiatic lithographicae press (Calcutta). Wang, Y.-L., Li, X., Guo, J., Guo, Z.-G., Li, S.-F., & Zhao, G.-F. (2010). Chloroplast DNA phylogeography of Clintoniaudensis Trautv. & Mey. (Liliaceae) in East Asia. Molecular Phylogenetics and Evolution, 55(2), 721–32. doi:10.1016/j.ympev.2010.02.010 Xinqi, C., & Takahashi, H. (2000). Tricyrtis Wallich. In Z. Y. Wu & P. H. Raven (Eds.), Flora of China Vol. 24 (pp. 151–153). Beijing and St. Louis: Science and Missouri Botanical Garden. Ye, J.-W., Guo, X.-D., Wang, S.-H., Bai, W.-N., Bao, L., Wang, H.-F., & Ge, J.-P. (2015). Molecular evidence reveals a closer relationship between Japanese and mainland subtropical specimens of a widespread tree species, Acer mono. Biochemical Systematics and Ecology, 60, 143–149. doi:10.1016/j.bse.2015.04.010 Ying, S.-S. (1988). A new variety of Tricyrtis formosana Baker from Taiwan. In Coloured Illustrated Flora of Taiwan III (pp. 619–620). Taipei. Ying, S.-S. (2000). Tricyrtis. In 2nd ed. Editorial Board of Flora of Taiwan (Ed.), Flora of Taiwan, Vol.5, 2nd edn. (2nd ed., pp. 67–69). Taiwan: National Science Council of the Republic of China. Yu, Y., Harris, a J., & He, X. (2010). S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56(2), 848–50. doi:10.1016/j.ympev.2010.04.011 Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science (New York, N.Y.), 292(5517), 686–93. doi:10.1126/science.1059412 Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., Hays, J. D., … Huybrechts, P. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science (New York, N.Y.), 292(5517), 686–93. doi:10.1126/science.1059412 Zander, R. H. (2004). Minimal Values for Reliability of Bootstrap and Jackknife Proportions, Decay Index, and Bayesian Posterior Probability. PhyloInformatics, (1985), 1–13 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18937 | - |
dc.description.abstract | 百合科油點草屬是一個侷限分布於東亞的屬,包含約20 種生育地以溫帶為主、少數為亞熱帶的植物。目前油點草屬的研究僅侷限於使用外觀形態及生態觀察、以及支持度不高的分子親緣關係研究,其生物地理起源仍有待進一步研究。臺灣產的油點草屬植物外觀形態自成一格,加上適應於亞熱帶環境的生態習性,特異於本屬分布於臺灣以外的物種。但是從過去多次的學名變動,可看出有部分臺灣產的油點草屬植物似乎不容易從外觀形態確實區別分類群。本文使用5段葉綠體DNA片段 (rps16 intron, trnL-trnF, atpF-atpH, psbM-ycf6, rpl32-trnL spacer) 及細胞核DNA片段ITS,重建油點草屬親緣關係樹,藉此檢測本屬植物的生物地理假說。此外使用2段葉綠體DNA片段 (rps16 intron, trnL-trnF) 及細胞核DNA 的 ITS 序列片段,重建臺灣產油點草屬物種間的基因單型網狀親緣關係圖,藉此檢驗目前的分類假說。根據分子親緣關係進行之生物地理起源分析結果顯示現生油點草屬起源於日本,再擴散至日本以外的區域。臺灣產的物種為單起源,共同祖先可能是來自中國或日本。而臺灣產物種的網狀親緣關係圖結果,並不支持目前臺灣油點草 (T. formosana)、高山油點草 (T. ravenii) 和毛果油點草 (T. lasiocarpa) 分成 3 個種的分類處理,建議應予合併成 1 個種。 | zh_TW |
dc.description.abstract | The liliaceous Tricyrtis Wall. is an East Asian endemic genus of ca. 20 mainly perennial herbaceous species inhabiting humid temperate environments. Previous biogeographic hypotheses were proposed based on inferences of morphology, ecology, and inadequately executed molecular phylogenetic studies with poor supports. Morphologically, the Taiwanese Tricyrtis are distinct and ecologically exceptional in their mainly subtropical distribution. However, the unsettled taxonomy of Taiwanese Tricyrtis as manifested by a long list of nomenclatural also suggests that further study is needed. This study aims to test the biogeographic hypothesis of the genus and improve the taxonomic treatment of Taiwanese taxa by reconstructing phylogenetic relationship based on DNA sequence data. This study reconstructs phylogenetic relationships of Tricyrtis based on DNA sequences of 5 chloroplast regions (rps16 intron, trnL-trnF, atpF-atpH, psbM-ycf6, rpl32-trnL spacer) and nuclear ribosomal intergenic transcribed spacer (ITS). To test species hypothesis of Taiwanese Tricyrtis, haplotype networks were reconstructed using rps 16 intron and ITS. Biogeographic analyses based on molecular phylogenetic relationships show that current species of Tricyrtis is most likely originated in Japan and subsequently dispersed to Korea, China and other regions. Haplotype networks of both chloroplast and ITS sequences of Taiwanese species reveal non-monophyly of T. formosana, T. lasiocarpa, and T. ravenii, suggesting incomplete speciation of the three taxa. The taxonomic treatment of treating them as three varieties under T. formosana is proposed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:40:14Z (GMT). No. of bitstreams: 1 ntu-105-R01625056-1.pdf: 3985251 bytes, checksum: 4bc6222d73b380ea229166ddea74d4c2 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 1. 前言 1
1.1. 分類學 3 1.1.1. 屬名 3 1.1.2. 分類歸屬 3 1.1.3. 屬以下分類系統 4 1.1.4. 台灣產油點草屬分類 11 1.2. 台灣產油點草屬概況 12 1.3. 細胞學 13 1.4. 生物地理 13 1.4.1. 油點草屬相關文獻回顧 13 1.4.2. 日華植物區系 15 1.5. 親緣關係 15 2. 研究目的 16 3. 材料與方法 17 3.1. 材料 17 3.1.1. 取樣規劃 17 3.1.2. 材料取得 17 3.2.方法 18 3.2.1. DNA萃取 18 3.2.2. marker挑選與設計 19 3.2.3. PCR與定序 19 3.3.分析 20 3.3.1. 整理序列 20 3.3.2. 重建親緣關係與定年 20 3.3.3. 重建臺灣產油點草屬親緣關係 21 4.結果 22 4.1. 油點草屬的親緣分析結果 22 4.2. 油點草屬的祖先型分佈及定年分析結果 28 4.3. 臺灣產油點草屬的的基因單型網狀圖 31 5. 討論 35 5.1. 現存標本問題 35 5.2. 從親緣關係樹討論油點草屬現行屬以下分類位階之劃分 36 5.3. 油點草屬的生物地理 37 5.4. 從基因單型網狀圖探討本屬在臺灣的種化 39 6. 結論 40 7. 分類處理建議 42 8. 引用文獻 45 9. 附錄 65 | |
dc.language.iso | zh-TW | |
dc.title | 百合科油點草屬之分子系統學研究:親緣關係、生物地理與臺灣產物種之分類修訂 | zh_TW |
dc.title | Molecular systematics of Tricyrtis Wall. (Liliaceae): phylogenetic biogeography and taxonomy of Taiwanese species | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王震哲(Jenn-Che Wang),曾彥學(Yen-Hsueh Tseng) | |
dc.subject.keyword | 百合科,油點草屬,親緣關係,生物地理學,臺灣油點草,毛果油點草,高山油點草, | zh_TW |
dc.subject.keyword | Liliaceae,Tricyrtis,phylogeny,biogeography,Tricyrtis formosana,Tricyrtis lasiocarpa,Tricyrtis ravenii, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201603255 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。