Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18924
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴向華(Eddie Hsiang-Hua Lai)
dc.contributor.authorHsuan-Fang Wangen
dc.contributor.author王宣方zh_TW
dc.date.accessioned2021-06-08T01:39:46Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-22
dc.identifier.citation1. Alaaeddine, N., G. Hilal, R. Baddoura, J. Antoniou and J. A. Di Battista (2011). 'CCL20 stimulates proinflammatory mediator synthesis in human fibroblast-like synoviocytes through a MAP kinase-dependent process with transcriptional and posttranscriptional control.' J Rheumatol 38(9): 1858-1865.
2. Alamanos, Y. and A. A. Drosos (2005). 'Epidemiology of adult rheumatoid arthritis.' Autoimmun Rev 4(3): 130-136.
3. Apparailly, F. (2010). 'Looking for microRNA polymorphisms as new rheumatoid arthritis risk loci?' Joint Bone Spine 77(5): 377-379.
4. Ayoubi, T. A. and W. J. Van De Ven (1996). 'Regulation of gene expression by alternative promoters.' FASEB J 10(4): 453-460.
5. Bartok, B. and G. S. Firestein (2010). 'Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis.' Immunol Rev 233(1): 233-255.
6. Bodamyali, T., C. R. Stevens, M. E. Billingham, S. Ohta and D. R. Blake (1998). 'Influence of hypoxia in inflammatory synovitis.' Ann Rheum Dis 57(12): 703-710.
7. Bottini, N. and G. S. Firestein (2013). 'Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors.' Nat Rev Rheumatol 9(1): 24-33.
8. Brakspear, K. S. and D. J. Mason (2012). 'Glutamate signaling in bone.' Front Endocrinol (Lausanne) 3: 97.
9. Chandel, N. S., D. S. McClintock, C. E. Feliciano, T. M. Wood, J. A. Melendez, A. M. Rodriguez and P. T. Schumacker (2000). 'Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing.' J Biol Chem 275(33): 25130-25138.
10. Chhabra, R., R. Dubey and N. Saini (2010). 'Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases.' Mol Cancer 9: 232.
11. Choy, E. H. and G. S. Panayi (2001). 'Cytokine pathways and joint inflammation in rheumatoid arthritis.' N Engl J Med 344(12): 907-916.
12. Cowan, R. W., E. P. Seidlitz and G. Singh (2012). 'Glutamate signaling in healthy and diseased bone.' Front Endocrinol (Lausanne) 3: 89.
13. Dang, C. V. (2010). 'Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?' Cell Cycle 9(19): 3884-3886.
14. Daye, D. and K. E. Wellen (2012). 'Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.' Semin Cell Dev Biol 23(4): 362-369.
15. Dhup, S., R. K. Dadhich, P. E. Porporato and P. Sonveaux (2012). 'Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis.' Curr Pharm Des 18(10): 1319-1330.
16. Distler, J. H., R. H. Wenger, M. Gassmann, M. Kurowska, A. Hirth, S. Gay and O. Distler (2004). 'Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis.' Arthritis Rheum 50(1): 10-23.
17. Du, J., Y. Zhou, X. Su, J. J. Yu, S. Khan, H. Jiang, J. Kim, J. Woo, J. H. Kim, B. H. Choi, B. He, W. Chen, S. Zhang, R. A. Cerione, J. Auwerx, Q. Hao and H. Lin (2011). 'Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.' Science 334(6057): 806-809.
18. Ellis GA, E. S., Gaffney K, Williams RB, Blake DR (1994). 'Synovial tissue oxygenation profile in inflamed and non-inflamed knee joints.' Br J Rheumatol 33: 172.
19. Eltzschig, H. K. and P. Carmeliet (2011). 'Hypoxia and inflammation.' N Engl J Med 364(7): 656-665.
20. Falchuk, K. H., E. J. Goetzl and J. P. Kulka (1970). 'Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis.' Am J Med 49(2): 223-231.
21. Finkel, T., C. X. Deng and R. Mostoslavsky (2009). 'Recent progress in the biology and physiology of sirtuins.' Nature 460(7255): 587-591.
22. Flood, S., R. Parri, A. Williams, V. Duance and D. Mason (2007). 'Modulation of interleukin-6 and matrix metalloproteinase 2 expression in human fibroblast-like synoviocytes by functional ionotropic glutamate receptors.' Arthritis Rheum 56(8): 2523-2534.
23. Fuchs, B. C. and B. P. Bode (2006). 'Stressing out over survival: glutamine as an apoptotic modulator.' J Surg Res 131(1): 26-40.
24. Garcia-Carbonell, R., A. S. Divakaruni, A. Lodi, I. Vicente-Suarez, A. Saha, H. Cheroutre, G. R. Boss, S. Tiziani, A. N. Murphy and M. Guma (2016). 'Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes.' Arthritis Rheumatol 68(7): 1614-1626.
25. Hajati, A. K., P. Alstergren, K. Nasstrom, J. Bratt and S. Kopp (2009). 'Endogenous glutamate in association with inflammatory and hormonal factors modulates bone tissue resorption of the temporomandibular joint in patients with early rheumatoid arthritis.' J Oral Maxillofac Surg 67(9): 1895-1903.
26. Hajati, A. K., K. Nasstrom, P. Alstergren, J. Bratt and S. Kopp (2010). 'Temporomandibular joint bone tissue resorption in patients with early rheumatoid arthritis can be predicted by joint crepitus and plasma glutamate level.' Mediators Inflamm 2010: 627803.
27. Hinoi, E., R. Ohashi, S. Miyata, Y. Kato, M. Iemata, H. Hojo, T. Takarada and Y. Yoneda (2005). 'Excitatory amino acid transporters expressed by synovial fibroblasts in rats with collagen-induced arthritis.' Biochem Pharmacol 70(12): 1744-1755.
28. Hinoi, E. and Y. Yoneda (2011). 'Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis.' J Pharmacol Sci 116(3): 248-256.
29. Hirschey, M. D. and Y. Zhao (2015). 'Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation.' Mol Cell Proteomics 14(9): 2308-2315.
30. Huang, J. Y., M. D. Hirschey, T. Shimazu, L. Ho and E. Verdin (2010). 'Mitochondrial sirtuins.' Biochim Biophys Acta 1804(8): 1645-1651.
31. International Human Genome Sequencing, C. (2004). 'Finishing the euchromatic sequence of the human genome.' Nature 431(7011): 931-945.
32. Izquierdo, E., J. D. Canete, R. Celis, M. J. Del Rey, A. Usategui, S. Marsal, R. Sanmarti, G. Criado and J. L. Pablos (2011). 'Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy.' Arthritis Rheum 63(9): 2575-2583.
33. Jensen, O. N. (2004). 'Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.' Curr Opin Chem Biol 8(1): 33-41.
34. Kim, M. H. and H. Kim (2013). 'Oncogenes and tumor suppressors regulate glutamine metabolism in cancer cells.' J Cancer Prev 18(3): 221-226.
35. Komatsu, N. and H. Takayanagi (2012). 'Inflammation and Bone Destruction in Arthritis: Synergistic Activity of Immune and Mesenchymal cells in Joints.' Frontiers in Immunology 3.
36. Laskin, D. M. (1995). 'The clinical diagnosis of temporomandibular disorders in the orthodontic patient.' Semin Orthod 1(4): 197-206.
37. Le, A., A. N. Lane, M. Hamaker, S. Bose, A. Gouw, J. Barbi, T. Tsukamoto, C. J. Rojas, B. S. Slusher, H. Zhang, L. J. Zimmerman, D. C. Liebler, R. J. Slebos, P. K. Lorkiewicz, R. M. Higashi, T. W. Fan and C. V. Dang (2012). 'Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.' Cell Metab 15(1): 110-121.
38. Lee, A. Y. and H. Korner (2014). 'CCR6 and CCL20: emerging players in the pathogenesis of rheumatoid arthritis.' Immunol Cell Biol 92(4): 354-358.
39. Lee, D. M., H. P. Kiener, S. K. Agarwal, E. H. Noss, G. F. Watts, O. Chisaka, M. Takeichi and M. B. Brenner (2007). 'Cadherin-11 in synovial lining formation and pathology in arthritis.' Science 315(5814): 1006-1010.
40. Lee, Y. Z., C. W. Yang, H. Y. Chang, H. Y. Hsu, I. S. Chen, H. S. Chang, C. H. Lee, J. C. Lee, C. R. Kumar, Y. Q. Qiu, Y. S. Chao and S. J. Lee (2014). 'Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells.' Oncotarget 5(15): 6087-6101.
41. Levine, A. J. and A. M. Puzio-Kuter (2010). 'The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.' Science 330(6009): 1340-1344.
42. Matsui, T., N. Nakata, S. Nagai, A. Nakatani, M. Takahashi, T. Momose, K. Ohtomo and S. Koyasu (2009). 'Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.' J Nucl Med 50(6): 920-926.
43. McNearney, T., D. Speegle, N. Lawand, J. Lisse and K. N. Westlund (2000). 'Excitatory amino acid profiles of synovial fluid from patients with arthritis.' J Rheumatol 27(3): 739-745.
44. Michishita, E., J. Y. Park, J. M. Burneskis, J. C. Barrett and I. Horikawa (2005). 'Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.' Mol Biol Cell 16(10): 4623-4635.
45. Muller-Ladner, U., J. Kriegsmann, B. N. Franklin, S. Matsumoto, T. Geiler, R. E. Gay and S. Gay (1996). 'Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice.' Am J Pathol 149(5): 1607-1615.
46. Nakagawa, T., D. J. Lomb, M. C. Haigis and L. Guarente (2009). 'SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle.' Cell 137(3): 560-570.
47. Park, J., Y. Chen, D. X. Tishkoff, C. Peng, M. Tan, L. Dai, Z. Xie, Y. Zhang, B. M. Zwaans, M. E. Skinner, D. B. Lombard and Y. Zhao (2013). 'SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.' Mol Cell 50(6): 919-930.
48. Polletta, L., E. Vernucci, I. Carnevale, T. Arcangeli, D. Rotili, S. Palmerio, C. Steegborn, T. Nowak, M. Schutkowski, L. Pellegrini, L. Sansone, L. Villanova, A. Runci, B. Pucci, E. Morgante, M. Fini, A. Mai, M. A. Russo and M. Tafani (2015). 'SIRT5 regulation of ammonia-induced autophagy and mitophagy.' Autophagy 11(2): 253-270.
49. Pope, R. M. (2002). 'Apoptosis as a therapeutic tool in rheumatoid arthritis.' Nature Reviews Immunology 2(7): 527-535.
50. Rardin, M. J., W. He, Y. Nishida, J. C. Newman, C. Carrico, S. R. Danielson, A. Guo, P. Gut, A. K. Sahu, B. Li, R. Uppala, M. Fitch, T. Riiff, L. Zhu, J. Zhou, D. Mulhern, R. D. Stevens, O. R. Ilkayeva, C. B. Newgard, M. P. Jacobson, M. Hellerstein, E. S. Goetzman, B. W. Gibson and E. Verdin (2013). 'SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.' Cell Metab 18(6): 920-933.
51. Sasaguri, K., R. Ishizaki-Takeuchi, S. Kuramae, E. M. Tanaka, T. Sakurai and S. Sato (2009). 'The temporomandibular joint in a rheumatoid arthritis patient after orthodontic treatment.' Angle Orthod 79(4): 804-811.
52. Schlicker, C., M. Gertz, P. Papatheodorou, B. Kachholz, C. F. Becker and C. Steegborn (2008). 'Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.' J Mol Biol 382(3): 790-801.
53. Sodhi, A., S. Naik, A. Pai and A. Anuradha (2015). 'Rheumatoid arthritis affecting temporomandibular joint.' Contemp Clin Dent 6(1): 124-127.
54. Tanida, S., H. Yoshitomi, K. Nishitani, M. Ishikawa, T. Kitaori, H. Ito and T. Nakamura (2009). 'CCL20 produced in the cytokine network of rheumatoid arthritis recruits CCR6+ mononuclear cells and enhances the production of IL-6.' Cytokine 47(2): 112-118.
55. Treuhaft, P. S. and M. C. DJ (1971). 'Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases.' Arthritis Rheum 14(4): 475-484.
56. van Hall, G. (2010). 'Lactate kinetics in human tissues at rest and during exercise.' Acta Physiol (Oxf) 199(4): 499-508.
57. Vander Heiden, M. G., L. C. Cantley and C. B. Thompson (2009). 'Understanding the Warburg effect: the metabolic requirements of cell proliferation.' Science 324(5930): 1029-1033.
58. Verdin, E., M. D. Hirschey, L. W. Finley and M. C. Haigis (2010). 'Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling.' Trends Biochem Sci 35(12): 669-675.
59. Vijayant, V., M. Sarma, H. Aurangabadkar, L. Bichile and S. Basu (2012). 'Potential of (18)F-FDG-PET as a valuable adjunct to clinical and response assessment in rheumatoid arthritis and seronegative spondyloarthropathies.' World J Radiol 4(12): 462-468.
60. Warburg, O. (1956). 'On the origin of cancer cells.' Science 123(3191): 309-314.
61. White, G. E., A. J. Iqbal and D. R. Greaves (2013). 'CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges.' Pharmacol Rev 65(1): 47-89.
62. Wu, D. and P. Yotnda (2011). 'Induction and testing of hypoxia in cell culture.' J Vis Exp(54).
63. Zhang, H. G., W. D. Blackburn, Jr. and P. P. Minghetti (1997). 'Characterization of a SV40-transformed rheumatoid synovial fibroblast cell line which retains genotypic expression patterns: a model for evaluation of anti-arthritic agents.' In Vitro Cell Dev Biol Anim 33(1): 37-41.
64. Zhou, Y., H. Zhang, B. He, J. Du, H. Lin, R. A. Cerione and Q. Hao (2012). 'The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).' J Biol Chem 287(34): 28307-28314.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18924-
dc.description.abstract類風濕性關節炎 (rheumatoid arthritis) 是一種多因性的自體免疫疾病,盛行率約佔世界人口的1%,主要特徵為滑膜關節 (synovial joint) 的慢性發炎,若不介入適當治療,會逐漸演變為關節的破壞與失能。臨床上約有4%至80%的類風濕性關節炎患者顳顎關節也有受到類風濕性關節炎的侵犯,除了關節壓痛 (tenderness)、疼痛 (pain)、腫脹、關節彈響聲 (clicking)或捻髮聲 (crepitation)、晨僵 (morning stiffness)、下顎活動與張口受限、咬力減弱等症狀外;隨著疾病的進展,較嚴重的案例會出現下顎髁頭 (condylar head) 與關節隆突 (articular eminence) 的吸收與破壞,除了造成關節不適與功能限制外,也會逐漸發展成前牙開咬與下顎後縮的不正咬合。
目前類風濕性關節炎患者主要使用的治療藥物包括非類固醇抗發炎藥、疾病修飾抗風濕病藥 (disease modifying anti-rheumatic drugs,DMARDs) 以及生物製劑等;雖然生物製劑如抗細胞激素療法 (cytokine antagonist)、B細胞消除療法 (B cell deletion) 及抗T細胞療法等大大提高臨床上的治療效果,但都只能對部分患者有效,無法提供全面性的治療效果。目前已知滑膜纖維母細胞在類風濕性關節炎的致病機轉中扮演了關鍵的角色,滑膜纖維母細胞的大量增生造成慢性持續的發炎反應以及關節的破壞,若能找到抑制它的療法,不但可減少關節的破壞、緩解因滑膜纖維母細胞所引起的一連串發炎反應,也可讓藥物的作用更針對目標組織,減少對整體免疫系統的影響。
在慢性發炎的缺氧環境中,代謝重整對滑膜纖維母細胞的增生扮演了重要的角色,本實驗的研究結果顯示類風濕性關節炎中的缺氧環境,會使glutaminase的表現量與活性增加,造成glutaminase的下游產物glutamate產量上升,促使滑膜纖維母細胞分泌CCL20,造成發炎反應的持續進行與關節的破壞。而SIRT5能抑制缺氧刺激下所增加的glutaminase表現量與活性,減少缺氧刺激對glutaminolysis這條路徑的活化以及缺氧刺激所誘發的CCL20分泌,進而減緩類風濕性關節炎的進展,期許本機制的研究能為類風濕性關節炎的治療提供一個有潛力的新途徑。
zh_TW
dc.description.abstractRheumatoid arthritis (RA) is a multifactorial autoimmune disease affecting 1% of the world population. The pathology is characterized by chronic inflammation of synovial joints, leading to joint destruction and disability. 4% to 80% RA patients exhibit clinical temporomandibular joints (TMJ) involvement. The clinical findings in TMJ affected by RA include joint and muscle tenderness, pain, swelling, clicking sound, crepitation, morning stiffness, restricted mandibular movement, mouth open limitation, and reduced bite forces. As the progression of the disease, bone resorption may exacerbate joint dysfunction and develop malocclusion such as anterior open bite and mandibular retrognathism.
The current treatments of RA include nonsteroidal anti-inflammatory drug (NSAID), disease modifying anti-rheumatic drugs (DMARDs), and biological therapies. The introduction of biological therapies such as cytokine antagonist, B cell depletion, and T cell co-stimulation blockers markedly improved clinical outcomes but just in part of selected patients. Rheumatoid arthritis synovial fibroblasts (RASFs) play a key role in rheumatoid arthritis with its dramatic increase in number and aggressive behavior, contributing to persistent inflammation and destruction of joint. Targeting RASFs might improve clinical outcomes in persistent joint inflammation and bone destruction without suppressing systemic immunity. In the hypoxic environment of the inflamed joint, metabolic reprogramming plays an important role in the survival and overgrowth of RASFs. Our data have demonstrated the hypoxic environment of rheumatoid arthritis may increase the amount and activity of glutaminase, contributing to the increase of the product of glutaminolysis, glutamate. The elevated amount of glutamate may further stimulate CCL20 production by RASFs and lead to the progression of RA. SIRT5 may attenuate the progression of RA via modulating hypoxia-induced glutaminolysis reprogramming and CCL20 secretion in RASFs. This finding may provide a therapeutic potential of RA.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:39:46Z (GMT). No. of bitstreams: 1
ntu-105-R02422017-1.pdf: 1775459 bytes, checksum: 36814bfe7ed3d07af1aa58291b1baaab (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
第一章 導論 1
1.1 類風濕性關節炎 (rheumatoid arthritis,RA) 1
1.2 滑膜纖維母細胞在類風濕性關節炎中所扮演的角色 2
1.3 CC趨化因子20與類風濕性關節炎 4
1.4 受類風濕性關節炎侵犯關節中的缺氧環境 5
1.5 代謝重整 (metabolism reprogramming) 6
1.5.1 糖解作用 (glycolysis) 與氧化磷酸化 (oxidative phosphorylation, OxPhos) 6
1.5.2 穀氨醯胺分解 (glutaminolysis) 7
1.5.3 穀氨醯胺酶 (Glutaminase, GLS) 7
1.6 SIRT5與類風濕性關節炎進展的可能關聯性 9
第二章 實驗目的 11
第三章 材料與方法 13
3.1 試劑與抗體 13
3.2 實驗細胞株 13
3.3 建立SIRT5穩定表達細胞株 (SIRT5 stable cell line) 13
3.4 細胞缺氧刺激 14
3.5 細胞粒腺體內GLS蛋白質的萃取 14
3.6 西方點墨法 (Western blot) 15
3.7 檢測glutaminase活性: glutaminase activity assay 16
3.8 酵素免疫分析法: CCL20 ELISA assay 17
3.9 免疫共沉澱法 (Co-Immunoprecipitation, Co-IP) 17
3.10 GLS蛋白succinylation修飾偵測 17
第四章 實驗結果 19
4.1 SIRT5抑制缺氧刺激下所增加的GLS 蛋白質表現量 19
4.2 SIRT5抑制缺氧刺激下所增加的GLS 蛋白質活性 20
4.3 SIRT5在缺氧刺激下對GLS lysine succinylation的影響 21
4.4 SIRT5抑制缺氧刺激下所增加的CCL20分泌量 23
4.5 Glutamate恢復SIRT5所抑制的缺氧刺激下增加的CCL20分泌量 24
第五章 討論 27
5.1 SIRT5 在GLS lysine succinylation上所扮演的角色 27
5.2 滑膜纖維母細胞的代謝重整在類風濕性關節炎中所扮演的角色 28
第六章 結論 32
第七章 未來研究方向 33
參考文獻 35
附錄 43
dc.language.isozh-TW
dc.titleSIRT5可經由調控缺氧所誘發之glutaminolysis代謝重整來減緩類風濕性關節炎的進展zh_TW
dc.titleSIRT5 Modulates Hypoxia-induced Glutaminolysis Reprogramming: Therapeutic Potential of Rheumatoid Arthritisen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林思洸(Sze-Kwan Lin),洪志遠(Chi-Yuan Hong)
dc.subject.keyword類風濕性關節炎,缺氧,滑膜纖維母細胞,代謝重整,glutaminolysis,SIRT5,CCL20,zh_TW
dc.subject.keywordrheumatoid arthritis,hypoxia,rheumatoid arthritis synovial fibroblast ( RASF),metabolic reprogramming,glutaminolysis,SIRT5,CCL20,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201603422
dc.rights.note未授權
dc.date.accepted2016-08-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved