Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun-Pin Lin)
dc.contributor.authorChen-Ying Wangen
dc.contributor.author王振穎zh_TW
dc.date.accessioned2021-06-08T01:39:39Z-
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-22
dc.identifier.citation1. Abukawa H, Papadaki M, Abulikemu M, et al. The engineering of craniofacial tissues in the laboratory: a review of biomaterials for scaffolds and implant coatings. Dent Clin North Am. 2006; 50(2):205-216, viii.
2. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001; 10 Suppl 2:S96-101.
3. Berglundh T, Lindhe J, Jonsson K, Ericsson I. The topography of the vascular systems in the periodontal and peri-implant tissues in the dog. J Clin Periodontol. 1994; 21(3):189-193.
4. Bernhardt R, Scharnweber D, Müller B, et al. Comparison of microfocus- and synchrotron X-ray tomography for the analysis of osteointegration around Ti6Al4V implants. Eur Cell Mater. 2004; 7:42-51; discussion 51.
5. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001; 19(3):180-192.
6. Bohner M. New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures. Biomaterials. 2004; 25(4):741-749.
7. Bryant SR. The effects of age, jaw site, and bone condition on oral implant outcomes. Int J Prosthodont. 1998; 11(5):470-490.
8. Buser D, Weber HP, Donath K, Fiorellini JP, Paquette DW, Williams RC. Soft tissue reactions to non-submerged unloaded titanium implants in beagle dogs. J Periodontol. 1992; 63(3):225-235.
9. Caplanis N, Sigurdsson TJ, Rohrer MD, Wikesjö UM. Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Int J Oral Maxillofac Implants. 1997; 12(5):634-642.
10. Carlsson L, Röstlund T, Albrektsson B, Albrektsson T, Brånemark PI. Osseointegration of titanium implants. Acta Orthop Scand. 1986; 57(4):285-289.
11. Chang KC, Chang CC, Chen WT, Hsu CK, Lin FH, Lin CP. Development of calcium phosphate/sulfate biphasic cement for vital pulp therapy. Dent Mater. 2014; 30(12):e362-370.
12. Chang MC, Ko CC, Liu CC, et al. Elasticity of alveolar bone near dental implant-bone interfaces after one month's healing. J Biomech. 2003; 36(8):1209-1214.
13. Chiang YC, Chang HH, Wong CC, et al. Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-β1/VEGF reservoir for vital pulp therapy. Dent Mater. 2016.
14. Coelho PG, Freire JN, Granato R, et al. Bone mineral apposition rates at early implantation times around differently prepared titanium surfaces: a study in beagle dogs. Int J Oral Maxillofac Implants. 2011; 26(1):63-69.
15. Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol. 1980; 106(7):405-409.
16. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998; 11(5):391-401.
17. de Girolamo L, Lucarelli E, Alessandri G, et al. Mesenchymal stem/stromal cells: a new 'cells as drugs' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des. 2013; 19(13):2459-2473.
18. del Cerro M, Cogen J, del Cerro C. Stevenel's Blue, an excellent stain for optical microscopical study of plastic embedded tissues. Microsc Acta. 1980; 83(2):117-121.
19. del Cerro M, Standler NS, del Cerro C. High resolution optical microscopy of animal tissues by the use of sub-micrometer thick sections and a new stain. Microsc Acta. 1980; 83(3):217-220.
20. Deporter DA, Watson PA, Pilliar RM, et al. A histological assessment of the initial healing response adjacent to porous-surfaced, titanium alloy dental implants in dogs. J Dent Res. 1986; 65(8):1064-1070.
21. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4):315-317.
22. Duailibi SE, Duailibi MT, Vacanti JP, Yelick PC. Prospects for tooth regeneration. Periodontol 2000. 2006; 41:177-187.
23. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res. 2008;87(8):745-750.
24. Erben RG, Weiser H, Sinowatz F, Rambeck WA, Zucker H. Vitamin D metabolites prevent vertebral osteopenia in ovariectomized rats. Calcif Tissue Int. 1992; 50(3):228-236.
25. Ericsson I, Johansson CB, Bystedt H, Norton MR. A histomorphometric evaluation of bone-to-implant contact on machine-prepared and roughened titanium dental implants. A pilot study in the dog. Clin Oral Implants Res. 1994; 5(4):202-206.
26. Friberg B, Sennerby L, Linden B, Gröndahl K, Lekholm U. Stability measurements of one-stage Brånemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg. 1999; 28(4):266-272.
27. Gilmore SK, Whitson SW, Bowers DE. A simple method using alizarin red S for the detection of calcium in epoxy resin embedded tissue. Stain Technol. 1986;61(2):89-92.
28. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002; 81(8):531-535.
29. Guo H, Wei J, Liu CS. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction. Biomed Mater. 2006; 1(4):193-197.
30. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials. 2007; 28(4):680-689.
31. Hong CY, Lin SK, Kok SH, Wong MY, Hong YC. Histologic reactions to a newly developed calcium phosphate cement implanted in the periapical and periodontal tissues. J Formos Med Assoc. 1990; 89(4):297-304.
32. Hou LT, Liu CM, Lei JY, Wong MY, Chen JK. Biological effects of cementum and bone extracts on human periodontal fibroblasts. J Periodontol. 2000;71(7):1100-1109.
33. Huang HM, Chiu CL, Yeh CY, Lin CT, Lin LH, Lee SY. Early detection of implant healing process using resonance frequency analysis. Clin Oral Implants Res. 2003; 14(4):437-443.
34. Huang HM, Lee SY, Yeh CY, Lin CT. Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin Oral Implants Res. 2002;13(1):65-74.
35. Ibsen KH, Urist MR. The biochemistry and the physiology of the tetracyclines: with special reference to mineralized tissues. Clin Orthop Relat Res. 1964; 32:143-169.
36. Ishizaka R, Hayashi Y, Iohara K, et al. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials. 2013; 34(8):1888-1897.
37. Jung RE, Glauser R, Schärer P, Hämmerle CH, Sailer HF, Weber FE. Effect of rhBMP-2 on guided bone regeneration in humans. Clin Oral Implants Res. 2003; 14(5):556-568.
38. Kim J, Kim IS, Cho TH, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007; 28(10):1830-1837.
39. Kim SH, Kim KH, Seo BM, et al. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol. 2009; 80(11):1815-1823.
40. Kokubo S, Fujimoto R, Yokota S, et al. Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials. 2003; 24(9):1643-1651.
41. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol. 2001; 153(5):1133-1140.
42. Langer R, Vacanti JP. Tissue engineering. Science. 1993; 260(5110):920-926.
43. Lee J, Tran Q, Seeba G, Wikesjö UM, Susin C. The critical-size supraalveolar peri-implant defect model: reproducibility in histometric data acquisition of alveolar bone formation and osseointegration. J Clin Periodontol. 2009; 36(12):1067-1074.
44. Lee SI, Lee ES, El-Fiqi A, Lee SY, Eun-Cheol Kim, Kim HW. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways. J Biomed Nanotechnol. 2016; 12(5):1048-1062.
45. Lundgren D, Rylander H, Andersson M, Johansson C, Albrektsson T. Healing-in of root analogue titanium implants placed in extraction sockets. An experimental study in the beagle dog. Clin Oral Implants Res. 1992; 3(3):136-143.
46. Maioli M, Basoli V, Santaniello S, et al. Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells Int. 2016; 2016:2056416.
47. Manz MC, Morris HF, Ochi S. An evaluation of the Periotest system. Part I: Examiner reliability and repeatability of readings. Dental Implant Clinical Group (Planning Committee). Implant Dent. 1992; 1(2):142-146.
48. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003; 100(10):5807-5812.
49. Mokry J, Soukup T, Micuda S, et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol. 2010; 2010:673513.
50. Murphy WL, Mooney DJ. Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J Periodontal Res. 1999; 34(7):413-419.
51. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005; 31(10):711-718.
52. Olivé J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants. 1990; 5(4):390-400.
53. Omori M, Tsuchiya S, Hara K, et al. A new application of cell-free bone regeneration: immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther. 2015; 6:124.
54. Radentz WH, Collings CK. The implantation of plaster of paris in the alveolar process of the dog. J Periodontol. 1965; 36(5):357-364.
55. Saito E, Saito A, Kawanami M. Favorable healing following space creation in rhBMP-2-induced periodontal regeneration of horizontal circumferential defects in dogs with experimental periodontitis. J Periodontol. 2003; 74(12):1808-1815.
56. Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone. 1995; 16(1):9-15.
57. Schouten C, Meijer GJ, van den Beucken JJ, Spauwen PH, Jansen JA. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography. Biomaterials. 2009; 30(27):4539-4549.
58. Sculean A, Windisch P, Szendröi-Kiss D, et al. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol. 2008; 79(10):1991-1999.
59. Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004; 364(9429):149-155.
60. Sharma SK, Millam S. Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key developmental stages. Plant Cell Rep. 2004; 23(3):115-119.
61. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005; 8(3):191-199.
62. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001; 29(6):532-539.
63. Sorensen RG, Wikesjö UM, Kinoshita A, Wozney JM. Periodontal repair in dogs: evaluation of a bioresorbable calcium phosphate cement (Ceredex) as a carrier for rhBMP-2. J Clin Periodontol. 2004; 31(9):796-804.
64. Subramaniam S, Fang YH, Sivasubramanian S, Lin FH, Lin CP. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Biomaterials. 2016; 74:99-108.
65. Sumita Y, Honda MJ, Ohara T, et al. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials. 2006; 27(17):3238-3248.
66. Thesleff I, Tummers M. Stem cells and tissue engineering: prospects for regenerating tissues in dental practice. Med Princ Pract. 2003; 12 Suppl 1:43-50.
67. Thoma DS, Jung UW, Park JY, Bienz SP, Hüsler J, Jung RE. Bone augmentation at peri-implant dehiscence defects comparing a synthetic polyethylene glycol hydrogel matrix vs. standard guided bone regeneration techniques. Clin Oral Implants Res. 2016.
68. Treharne RW, Brighton CT, Korostoff E, Pollack SR. An in vitro study of electrical osteogenesis using direct and pulsating currents. Clin Orthop Relat Res. 1979(145):300-306.
69. Urist MR, Ibsen KH. Chemical Reactivity of Mineralized Tissue with Oxytetracycline. Arch Pathol. 1963; 76:484-496.
70. Wikesjö UM, Susin C, Qahash M, et al. The critical-size supraalveolar peri-implant defect model: characteristics and use. J Clin Periodontol. 2006; 33(11):846-854.
71. Yang Y, Rossi FM, Putnins EE. Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials. 2010; 31(33):8574-8582.
72. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002; 81(10):695-700.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18920-
dc.description.abstract使用植體作為缺牙骨脊的重建治療選擇,在臨床上已經相當普遍。但拔牙後的缺牙骨脊多有缺損或後續吸收的情形。植體置入時若面臨周圍大範圍骨缺損,除了初期穩定度可能受影響外,植體的長期成功率及是否能避免後續植體周圍炎的發生,都需要倚賴有效的植體周圍骨再生治療。
傳統處理植體周圍骨再生的方式為利用再生隔絕膜和骨材來達成引導骨再生。但可吸收再生膜常有維持空間能力不佳的問題,常需要加上骨釘來撐起空間,不但操作較困難,對於大範圍缺損成功率也較低,因此開發此類材料,尚須補強再生金三角中的細胞和生長因子,以期能更有功效。磷酸鈣/硫酸鈣雙相骨水泥可提供骨再生所需材料及可塑型的特性。而牙髓幹細胞被證實具有容易取得及良好的增殖率的特性,對於骨再生中需要增加前驅細胞量的目標,是不錯的選擇。因此,我們選擇對幹細胞親和度高的透明質酸來攜帶牙髓幹細胞,並和磷酸鈣/硫酸鈣雙相骨水泥混合為複合材料應用於植體周圍骨再生。本實驗的目的主要在研發透明質酸攜帶牙髓幹細胞之磷酸鈣/硫酸鈣雙相水泥應用於植體周圍骨缺損重建。
本實驗第一部分先分離培養齒源幹細胞,並確認牙髓幹細胞相對最優的效能。接著第二、三部份利用生物相容性及物化性質各項測試確認材料的最佳化。第四部分利用最佳化材料進行免疫缺乏小白鼠(SCID mouse)的實驗,初步觀察牙髓幹細胞和條件培養液加入材料的效果良好,材料放置在小鼠頂骨的傷口癒合良好,牙髓幹細胞和條件培養液對於前3周炎性反應和降解礦化情形相較於控制組都有促進的發現。
最後第五部分進行大動物-犬隻的功效性實驗,分成 3 組,實驗組一,使用磷酸鈣/硫酸鈣雙相骨水泥加上2%透明質酸及條件培養液攜帶犬牙髓幹細胞(FC);實驗組二,使用磷酸鈣/硫酸鈣雙相骨水泥加上2%透明質酸及條件培養液(F);控制組不使用材料為empty空白組(Con)。分別於植入後第 4 週、第 8 週與第 12 週 進行植體穩定度分析、放射線影像分析、斷層掃描分析與組織切片判讀和骨頭螢光標定觀察等分析,評估人工植體周圍的骨再生效果。
犬隻實驗結果,各組植體的存活率是100%,但仍伴隨程度不一的植體周圍炎;在植體穩定度上,皆有達到臨床上可以接受的穩定度。在組織切片中計算的硬組織的植體覆蓋率(%),八周及十二周組,兩實驗組F組(82±0.35,83.75±15.91)和FC組(81.25±5.30, 88.75±12.37)相較於控制組(38.35±13.31, 41.68±17.41)的覆蓋率都有達到統計上的差異,而在F組不同周間,其覆蓋率亦有達到統計上的差異。而在放射線影像及斷層掃描中分別計算的硬組織的植體覆蓋率,各組在各時段雖然都沒有達到統計上的差異,但仍可發現兩實驗組有高於控制組的趨勢。在螢光標定觀察下,兩實驗組的骨生成的時序性類似並相較控制組有促進效果;而在未脫鈣的組織切片中,我們亦可觀察到該時序性帶來的成骨差異。
加入牙髓幹細胞及條件培養液的磷酸鈣/硫酸鈣雙相骨水泥複合材料,有良好的生物相容性和適合骨再生治療的物化性質,動物實驗上材料應用於植體周圍骨損的再生手術,在組織學分析上植體覆蓋率的表現相較控制組有顯著差異,雖然放射影像分析未達顯著差異,但根據螢光標定及組織切片觀察上仍可由骨生成時序看到加入牙髓幹細胞及條件培養液的可能促進效果。透明質酸-條件培養液攜帶或不攜帶牙髓幹細胞之磷酸鈣/硫酸鈣雙相水泥應為植體周圍骨再生治療具潛力的選項。
zh_TW
dc.description.abstractIt is common to have dental implant in edentulous ridge reconstruction. After the tooth extraction, the following ridge resorption and deficiency is big problem to long-term implant success rate and it may cause the peri-implantitis. Therefore, to develop an efficient biomaterial for peri-implant bone regeneration is important to implant dentistry.
The most popular way to perform the guided bone regeneration is to apply a membrane as barrier and bone substitute as scaffold. It is often technique sensitive to reconstruct a large bony defect, but the clinicians may encounter the difficulty in space making. For better result, the development of biomaterial should consider more about the source of cells and growth factors for peri-implant bone regeneration.
Calcium phosphate and calcium sulfate biphasic cements may provide the potential of hydroxyapatite deposition and moldable property during regeneration procedure. The dental pulp stem cells are proved to be a good candidate for increasing bone progenitors. In this study, the dental pulp stem cells were incorporated in hyaluronic acid to mix with calcium phosphate and calcium sulfate biphasic cements as scaffold for peri-implant bone regeneration.
The study invetigate the superiority of dental pulp stem cell in proliferation and then try to figure out the best formula for this composite biomaterial by biocompatibility test and physicochemical test. The best formula was applied and operated in the calvarium model of SCID mouse. The performance of the biomaterial in wound healing was good, and it showed faster inflammatory response and mineralization in the group CPC/CSC mixed with a HA-conditioned medium hydrogel with/without dDPSC.
In the following, three beagle dogs, implant placement and peri-implant bone regeneration were performed 3 months after tooth extraction in the mandible. Two standardized box-shaped defects were bilaterally created, and dental implants were placed in the center of the defects with a dehiscence of 4 mm. Three treatment modalities were randomly applied: i) CPC/CSC mixed with a dDPSC HA hydrogel with conditioned medium: ii) CPC/CSC mixed with a dDPSC HA hydrogel: iii) no bone augmentation (empty). After a healing period of 4 and 8 and 16 weeks, micro-CT and histological analyses were performed.
The survival rate is 100% for all the implants but the implants were also with mucosal inflammation during observation period. Histomorphometric analysis revealed a greater marginal bone cover ratio(%) for groups in CPC/CSC mixed with a HA-conditioned medium hydrogel with/without dDPSC (82±0.35,83.75±15.91 at 8 weeks, 81.25±5.30, 88.75±12.37 at 16 weeks) compared to empty control (38.35±13.31 at 8 weeks, , 41.68±17.41 at 16 weeks). Regarding the regeneration process, CPC/CSC mixed with a HA-conditioned medium hydrogel with/without dDPSC were found to get superior healing potential at 4 weeks under fluorescence microscope observation of non-decalcified specimen.
CPC/CSC mixed with a HA-conditioned medium hydrogel with/without dDPSC is a potential biomaterial for peri-implant bone regeneration.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:39:39Z (GMT). No. of bitstreams: 1
ntu-105-D00422002-1.pdf: 31919787 bytes, checksum: c2641202c229f9119ef32a2069599e13 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iv
圖次 xi
表次 xiv
第一章 導論 1
第二章 研究背景與文獻回顧 2
2.1 組織工程(TISSUE ENGINEERING)在牙科的應用及基本原理 2
2.2 拔牙後的植體重建策略(STRATEGY FOR RECONSTRUCTION OF EXTRCTION SOCKETS) 5
2.2.1 立即植牙(Immediate Implant) 5
2.2.2 早期植牙同時合併骨再生手術(Early Implant Placement with Simulataneously Guided Bone Regeneration) 5
2.2.3 延遲植牙同時合併骨再生手術(Delayed Implant Placement with Simulataneously Guided Bone Regeneration) 6
2.2.4 階段性植牙並進行骨再生手術 6
2.3 現今材料應用於植體周圍骨缺損再生之缺點與限制 6
2.3.1 生醫陶瓷 7
2.3.2 近生物惰性陶瓷(nearly inert bioceramics) 7
2.3.3 生物活性陶瓷(surface-active bioceramics) 7
2.3.4 生物吸收性陶瓷(resorbable bioceramics) 7
2.3.5 磷酸鈣陶瓷與分類 8
2.3.6 磷酸鈣骨水泥 9
2.3.7 硫酸鈣骨水泥 10
2.3.8 市售可塑型的產品 11
2.4 磷酸鈣/硫酸鈣雙相(BIPHASIC)生醫骨水泥之應用潛力 11
2.5 齒源幹細胞對誘導植體周圍骨缺損再生及骨整合扮演的角色 11
2.5.1 齒源幹細胞(Odentogenic stem cell) 11
2.5.2 以γ-PGA水膠攜帶幹細胞 12
2.5.3 以Hyaluronic acid水膠攜帶幹細胞 12
2.6 生醫材料結合幹細胞應用於植體周圍骨缺損再生之優勢 13
2.7 生物相容性對生醫材料研發過程是重要的一環 13
第三章 研究目的 17
第四章 材料與實驗方法 18
4.1. 牙髓幹細胞的分離、鑑定與特性 18
4.1.1 牙髓及骨髓幹細胞培養 18
4.1.2 幹細胞增殖率評估(Proliferation rate) 19
4.1.3 細胞集落形成率評估(Colony-Forming Unit, CFU-F assay) 19
4.1.4 幹細胞進行流式細胞儀分析 19
4.1.5 脂肪分化誘導及其鑑定 20
4.1.6 成骨分化(Osteogenic Differentiation)誘導及其鑑定 20
4.1.6.1 鹼性磷酸酶(Alkaline phosphatase, ALPase)定性染色分析 20
4.1.6.2 細胞基質礦化小體染色(Alizarin Red S staining, ARS) 21
4.1.7 神經細胞誘導分化(Neurogenic Differentiation) 21
4.1.8 反轉錄聚合酶連鎖反應 21
4.2 磷酸鈣/硫酸鈣雙相材料之備製(CPC-CSC) 23
4.2.1 磷酸鈣骨水泥之備製(Calcium Phosphate Cements,CPCs) 23
4.2.2 磷酸/硫酸鈣雙相材料(CPC-CSC)及與透明質酸混合備製 23
4.3 生物相容性評估 24
4.3.1 人牙髓細胞(human pulp cell)之初級培養(primary culture) 25
4.3.2 Live/Dead細胞活性測定- Live and dead cells viability assay 26
4.3.3 倒立顯微鏡(inverted microscope)觀察(材料共培養) 26
4.3.4 細胞存活率實驗(cell viability assay)-Alamar blue test 27
4.4 材料物化性質分析(PHYSICOCHEMICAL PROPERTIES) 28
4.4.1 X光繞射分析(X-ray Diffraction analysis) 28
4.4.2 傅立葉轉換紅外線光譜(FT-IR) 28
4.4.3硬化時間(Setting Time) 29
4.4.4 酸鹼值評估(pH Variation) 29
4.4.5 抗壓強度測試(Compressive Strength) 29
4.4.6 表面型態分析-掃描式電子顯微鏡(SEM)觀察 30
4.4.7 表面元素分析-掃描式電子顯微鏡-能量散佈分析儀(SEM-EDS) 30
4.5 小動物實驗 31
4.5.1 實驗目標 31
4.5.2 實驗方法 31
4.6 大動物實驗 33
4.6.1 實驗設計 33
4.6.2 實驗動物的麻醉 33
4.6.3 動物實驗手術步驟 33
4.6.4 臨床觀察及照顧 36
4.6.5 植體穩定度測量 36
4.6.6 動物犧牲與標本取得 37
4.6.6.1 福馬林藥水的製備 37
4.6.6.2 動物的犧牲 37
4.6.6.3 標本的取得 38
4.6.7 放射線影像分析與斷層掃描 38
4.6.7.1 放射線影像分析 38
4.6.7.2 斷層掃描 39
4.6.8 標本製作與染色 39
4.6.8.1 標本標本的初步切割 39
4.6.8.2 含植體磨片標本製備 39
4.6.9 骨頭螢光標定 41
4.6.9.1 標定方法 41
4.6.9.2 本實驗所使用的螢光染劑 41
4.6.9.3 螢光顯微鏡觀察 42
4.6.9.4 植體周圍骨頭覆蓋率 42
4.6.10 本實驗所使用的統計方法 43
第五章 實驗結果與討論 44
5.1 牙髓幹細胞的分離、鑑定與特性 44
5.1.1 牙髓及骨髓幹細胞培養 44
5.1.2 神經細胞誘導分化 Neurogenic Differentiation 46
5.1.4 幹細胞進行流式細胞儀分析 47
5.1.5 幹細胞增殖率評估(Proliferation rate) 48
5.1.6 細胞集落形成率評估(Colony-Forming Unit, CFU-F assay) 48
5.1.7 成骨分化(Osteogenic Differentiation)誘導及其鑑定 49
5.2 磷酸鈣/硫酸鈣雙相材料之備製(CPC-CSC) 50
5.2.1 磷酸/硫酸鈣雙相材料添加玻尿酸(Hyaluronic acid) 50
5.3 材料物化性質分析(PHYSICOCHEMICAL PROPERTIES) 50
5.3.1 X光繞射分析(X-ray Diffraction analysis) 50
5.3.2 傅立葉轉換紅外線光譜(FT-IR) 51
5.3.3 硬化時間(Setting Time) 52
5.3.4 酸鹼值評估(pH Variation) 52
5.3.5 抗壓強度測試(Compressive Strength) 53
5.3.6 表面型態分析-掃描式電子顯微鏡(SEM)觀察 53
5.3.7 表面元素分析-掃描式電子顯微鏡-能量散佈分析儀(SEM-EDS) 54
5.4 生物相容性評估 54
5.4.1 細胞存活率實驗(cell viability assay)和材料共培養倒立顯微鏡觀察 54
5.4.2 細胞存活率實驗(cell viability assay)和材料共培養螢光染色顯微鏡觀察 55
5.4.3 螢光染劑細胞活性測試(Alamar blue assay) 56
5.5 小動物實驗 57
5.5.1 臨床外觀 57
5.5.2 放射影像X光照射及微電腦斷層Micro CT 58
5.5.2.1 放射影像X光照射 58
5.5.2.2 電腦斷層切片 60
5.5.3 脫鈣片HE染色 62
5.6 大動物實驗 65
5.6.1 外觀觀察 65
5.6.2 含植體磨片標本製備 66
5.6.3 植體穩定度測量 67
5.6.4 放射線影像分析與斷層掃描 69
5.6.5 脫鈣片HE染色觀察 73
5.6.6 非脫鈣標本 80
5.6.7 骨頭螢光標定 80
第六章 總結 86
參考文獻 88
dc.language.isozh-TW
dc.title研發透明質酸攜帶牙髓幹細胞之磷酸鈣/硫酸鈣雙相水泥應用於植體周圍骨再生治療zh_TW
dc.titleDevelopment of Calcium Phosphate and Calcium Sulfate Biphasic Cements Combined Dental Pulp Stem Cells Carrying by Hyaluronic Acid for Peri-implant Bone Regenerationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳文斌(Weng-Pin Chen),張維仁(Wei-Jen Chang),李志偉(Jyh-Wei Lee),章浩宏(Hao-Hueng Chang),姜昱至(Yu-Chih Chiang)
dc.subject.keyword磷酸鈣/硫酸鈣雙相水泥,牙髓幹細胞,透明質酸,植體周圍骨再生,zh_TW
dc.subject.keywordCalcium phosphate and calcium sulfate biphasic cements,dental pulp stem cell,hyaluronic acid,peri-implant regeneration,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201603451
dc.rights.note未授權
dc.date.accepted2016-08-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
31.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved