Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18915
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorChun-Yu Huangen
dc.contributor.author黃俊毓zh_TW
dc.date.accessioned2021-06-08T01:39:22Z-
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-22
dc.identifier.citation[1] International Energy Outlook 2016. 2016,
http://www.eia.gov/pressroom/presentations/sieminski_05112016.pdf.
[2] A. Celzard and V. Fierro, Energy & fuels, 2005, 19, 573-583.
[3] D. Lozano-Castello, J. Alcaniz-Monge, M. A. De la Casa-Lillo, D. Cazorla-Amorós and A. Linares-Solano, Fuel, 2002, 81, 1777-1803.
[4] C. F. Blazek, J. Grimes, P. Freman, B. K. Bailey and C. Colucci, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 1994, 39, 476-481.
[5] K. Kretschmer, A. Biastoch, L. Rüpke and E. Burwicz, Global Biogeochemical Cycles, 2015, 29, 610-625.
[6] Alternative Fuels Data Center-Fuel Properties Comparison, 2014, http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf.
[7] R. A. Munson and R. A. Clifton, Natural gas storage with zeolites, US Dept. of the Interior, 1971.
[8] V. C. Menon and S. Komarneni, J. Porous. Mater., 1998, 5, 43-58.
[9] C. Zhong and S. Wang, Acta Chim. Sinica, 2006, 23, 2375-2378.
[10] Methane Opportunities for Vehicular Energy, Advanced Research Project Agency - Energy, U.S. Dept. of Energy, Funding Opportunity no. DE-FOA-0000672, 2012.
[11] J. J. T. Perry, J. A. Perman and M. J. Zaworotko, Chem. Soc. Rev., 2009, 38, 1400-1417.
[12] Y. He, W. Zhou, T. Yildirimbd and B. Chen, Energy Environ. Sci., 2013, 6, 2735–2744.
[13] C. Sanchez, K. J. Shea and S. Kitagawa, Chem. Soc. Rev., 2011, 40, 498–519.
[14] D. Farrusseng, S. Aguado and C. P. Angew. Chem. Int. Ed., 2009, 48, 7502 – 7513.
[15] L. Sarkisov and J. Kim, Chem. Eng. Sci., 2015, 121, 322-330.
[16] H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, Science, 2013,
341, 1230444, 1-12.
[17] S Kitagawa, M Kondo, Chem. Soc. Jpn. 1998, 71, 1739 – 1753.
[18] H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 402, 276-279.
[19] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe and O. M. Yaghi, Science, 2002, 295, 469-471.
[20] A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 3494-3495
[21] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keefe, J. Kim and O. M. Yaghi, Science, 2010, 329, 424-428.
[22] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science, 1999, 283, 1148-1150.
[23] T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt and O.M. Yaghi, Chem. Eng. Sci., 2011, 66, 163-170.
[24] D. Han, F. L. Jiang, M. Y. Wu, L. Chen, Q. H. Chen and M. C. Hong, Chem. Commun., 2011, 47, 9861-9863.
[25] N. Klein, H. C. Hoffmann, A. Cadiau, J. Getzschmann, M. R. Lohe, S. Paasch, T. Heydenreich, K. Adil, I. Senkovska, E. Brunner and S. Kaskel, J. Mater. Chem., 2012, 22, 10303.
[26] N. Klein, I. Senkovska, I. A. Baburin, R. Grunker, U. Stoeck, M. Schlichtenmayer, B. Streppel, U. Mueller, S. Leoni, M. Hirscher and S. Kaskel, Chem. Eur. J, 2011, 17, 13007-13016.
[27] G. Q. Kong, Z. D. Han, Y. He, S. Ou, W. Zhou, T. Yildirim, R. Krishna, C. Zou, B. Chen and C. D. Wu, Chem. Eur. J, 2013, 19, 14886-14894.
[28] F. Gandara, H. Furukawa, S. Lee and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 5271-5274.
[29] R. P. Ojha, P. A. Lemieux, P. K. Dixon, A. J. Liu and D. J. Durian, Nature, 2004, 427, 521-523.
[30] R. D. Kennedy, V. Krungleviciute, D. J. Clingerman, J. E. Mondloch, Y. Peng, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, T. Yildirim, O. K. Farha and C. A. Mirkin, Chem. Mater., 2013, 25, 3539-3543.
[31] S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan and H. C. Zhou, J. Am. Chem. Soc., 2008, 130, 1012-1016.
[32] J. Pang, F. Jiang, M. Wu, D. Yuan, K. Zhou, J. Qian, K. Su and M. Hong, Chem. Commun., 2014, 50, 2834-2836.
[33] U. Stoeck, S. Krause, V. Bon, I. Senkovska and S. Kaskel, Chem. Commun., 2012, 48, 10841-10843.
[34] H. M. Wen, B. Li, D. Yuan, H. Wang, T. Yildirim, W. Zhou and B. Chen, J. Mater. Chem. A, 2014, 2, 11516-11522.
[35] D. Zhao, D. Yuan, A. Yakovenko and H. C. Zhou, Chem. Commun., 2010, 46, 4196-4198.
[36] D. Yuan, D. Zhao, D. Sun and H. C. Zhou, Angew. Chem. Int. Ed., 2010, 49,
5357-5361.
[37] G. Barin, V. Krungleviciute, D. A. Gomez-Gualdron, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, T. Yildirim and O. K. Farha, Chem. Mater., 2014, 26, 1912-1917.
[38] O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O'Neill, A. A. Sarjeant, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 9860-9863.
[39] Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O'Keeffe and B. Chen, Angew. Chem. Int. Ed., 2011, 50, 3178-3181.
[40] C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr and J. T. Hupp, Energy Environ. Sci., 2013, 6, 1158-1163.
[41] Y. Yan, S. Yang, A. J. Blake, W. Lewis, E. Poirier, S. A. Barnett, N. R. Champness and M. Schroder, Chem. Commun., 2011, 47, 9995-9997.
[42] D. Zhao, D. Yuan, D. Sun and H. C. Zhou, J. Am. Chem. Soc., 2009, 131, 9186-9188.
[43] W. Lu, D. Yuan, T. A. Makal, J. R. Li and H. C. Zhou, Angew. Chem. Int. Ed.,
2012, 51, 1580-1584.
[44] B. Li, H. M. Wen, H. Wang, H. Wu, M. Tyagi, T. Yildirim, W. Zhou and B. Chen, J. Am. Chem. Soc., 2014, 136, 6207-6210.
[45] X. Rao, J. Cai, J. Yu, Y. He, C. Wu, W. Zhou, T. Yildirim, B. Chen and G. Qian, Chem. Commun., 2013, 49, 6719-6721.
[46] F. X. Coudert, A. H. Fuchs, Coord. Chem. Rev, 2016, 307, 211-236.
[47] C. M. Simon, J. Kim, D. A. Gomez-Gualdron, J. S. Camp, Y. G. Chung, R. L. Martin, R. Mercado, M. W. Deem, D. Gunter, M. Haranczyk, D. S. Sholl, R. Q. Snurr and B. Smit, Energy Environ. Sci., 2015, 8, 1190–1199.
[48] D. A. Gomez-Gualdron, C. E. Wilmer, O. K. Farha, J. T. Hupp and R. Q. Snurr, . J. Phys. Chem. C, 2014, 118, 6941-6951.
[49] Y. J Colon and R. Q. Snurr, Chem. Soc. Rev., 2014, 43, 5735-5749.
[50] B. Liu, Q. Yang, C. Xue, C. Zhong, B. Chen and B. Smit, J. Phys. Chem. C, 2008, 112, 9854-9860.
[51] S. M. P. Lucena, P. G. M. Mileo, S. P. F. G and C. C. L, J. Am. Chem. Soc., 2011, 133, 19282-19285.
[52] J. A. Mason, M. Vennstra and J. R. Long, Chem. Sci., 2014, 5, 32-51.
[53] T. Duren, L. Sarkisov, O. M. Yaghi and R. Q. Snurr, Langmuir, 2004, 20, 2683-2689.
[54] L. Sarkisov and J. Kim, Chem. Eng. Sci., 2015, 121, 322-330.
[55] B. J. Sikora, R. Winnegar, D. M. Proserpio and R. Q. Snurr, Micropor. Mesopor. Mat., 2014, 186, 207-213.
[56] M. Fernandez, T. K. Woo, C. E. Wilmer and R. Q. Snurr, J. Phys. Chem. C, 2013, 117, 7681-7689.
[57] H. Wu, J. M. Simmons, Y. Liu, C. M. Brown, X. S. Wang, S. Ma, V. K. Peterson, P. D. Southon, C. J. Kepert, H. C. Zhou, T. Yildirim and W. Zhou, Chem. Eur. J, 2010, 16, 5205 – 5214.
[58] L. Chen, L. Grajciar, P. Nachtigall and T. Duren, J. Phys. Chem. C 2011, 115, 23074–23080.
[59] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp and R. Q. Snurr, Nat. Chem., 2012, 4, 83-89.
[60] M. Fernandez, T. K. Woo, C. E. Wilmer and R. Q. Snurr, J. Phys. Chem. C, 2013, 117, 7681-7689.
[61] R. P. Sheridan, Proc. Natl. Acad. Sci. U.S.A., 1989, 86, 8165-8169.
[62] 王文皓,國立台灣大學高分子與科學研究所碩士論文,2015,探討金屬有機框架材料結構性質與甲烷氣體分子吸附之關係。
[63] F. H. Allen, Acta Cryst., 2002. B58, 380-388.
[64] S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem., 1990, 94, 8897–8909.
[65] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. GoddardIII and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18915-
dc.description.abstract為了瞭解不同配位分子的MOFs材料對甲烷吸附位置與吸附量的影響,我們利用巨正則蒙地卡羅方法(GCMC)計算298K下甲烷分別於配位分子含三反應官能基數的HKUST-1、ZJU-36以及配位分子含四反應官能基數的NOTT-100、NOTT-101以及NOTT-102之恆溫吸附曲線與吸附位置。我們發現甲烷於此五種MOFs材料中的吸附作用利主要來自於苯環及金屬簇,其中在三反應官能基方面,儘管ZJU-36的DPS、GSA以及SPV皆比HKUST-1大,但由於骨架擴大的同時,苯環與金屬簇數量並沒有增加,增加的僅為對甲烷有較弱吸引力的碳鏈(C=C),因此甲烷數量增加的幅度有限,此外我們再將晶格體積因素考慮進去時,會導致最後由吸附個數換算成吸附量(v/v)時,ZJU-36呈現下降的趨勢。另外在四反應官能基方面,三者的DPS、GSA以及SPV皆為NOTT-102> NOTT-101> NOTT-100,但吸附曲線的趨勢在35Bar以下以NOTT-100為最高,35Bar以上則以NOTT-101為最高,主要原因是在低壓下,其實苯環數量的不同對甲烷吸附量的影響不大,但隨著壓力的增加,由於NOTT-101及NOTT-102的配位分子上苯環個數較多,甲烷會開始於苯環附近大幅增加。由以上的研究我們也認為在未來的MOF材料設計上,如果需要藉由擴大MOF的DPS、GSA以及SPV來填充甲烷,增加苯環數量的方式會比延長碳鏈的方式來的有效,我們深信這樣的結果可以為新型高性能MOFs的合成提供設計構想,促進MOFs材料的發展以及應用。zh_TW
dc.description.abstractIn this study, we employ simulation methods to calculate the adsorption capacity and predict the orientation of methane of five metal organic frameworks (MOFs). The MOFs which we choose is based on the same metal cluster, symmetry and number of functional groups but they are different from linkers. Then we explore the correlation among the adsorption capacity, the orientation and varying linkers.
First, We find that methane adsorbed in HKUST-1 and ZJU-36 is influenced by metal cluster and benzene rings. As the DPS, GSA and SPV increase, the number of carbon chains which have weak impact on methane increase. Therefore the number of methane increases slightly. And if we take the cell volume into consideration, the capacity value of ZJU-36 will decrease significantly.
In addition, as for NOTT series, methane is also influenced by metal cluster and benzene rings. And as the DPS, GSA and SPV increase, the rank of adsorption capacity does not increase as expected. After systematic research, we realize the reason why the rank is different below and exceed 35Bar is the number of benzene rings in consideration of cell volume.
To sum up, we think if scientists want to synthesize MOFs with larger DPS, GSA and SPV, the increment of benzene rings will be a better choice. We hope this research can provide good design concept for MOFs in the future to improve adsorption capacity.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:39:22Z (GMT). No. of bitstreams: 1
ntu-105-R03549029-1.pdf: 3437804 bytes, checksum: b9434700cdf911011eb3cc3900f38a02 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 ix
第一章 前言 1
第二章 模擬方法 18
2.1模型建構 18
2.2力場與勢能函數 18
2.3巨正則系綜蒙地卡羅方法 (GCMC) 21
2.4甲烷與骨架間之作用力計算 22
第三章 結果與討論 23
3.1 HKUST-1與ZJU-36的吸附量與吸附位置探討 23
3.2 NOTT-100、NOTT-101與NOTT-102的吸附量與吸附位置探討 34
第四章 結論 47
參考文獻 49
dc.language.isozh-TW
dc.title探討金屬有機框架材料其配位分子對於甲烷吸附量與吸附位向的影響zh_TW
dc.titleEffects of Varying Linkers on the Adsorption Capacity and Orientation of Methane in the Metal Organic Frameworksen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張博凱(Bor-Kae Chang),張志祥(Chih-Hsiang Chang)
dc.subject.keyword金屬有機框架,甲烷,吸附,zh_TW
dc.subject.keywordMetal Organic Framework,Methane,Adsorption,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201603411
dc.rights.note未授權
dc.date.accepted2016-08-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved