請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18870
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林敬哲 | |
dc.contributor.author | Wei-Ting Chen | en |
dc.contributor.author | 陳蔚庭 | zh_TW |
dc.date.accessioned | 2021-06-08T01:38:07Z | - |
dc.date.copyright | 2017-03-01 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-10-19 | |
dc.identifier.citation | 1. Aguilera, A. & Garcia-Muse, T. (2012). R loops: from transcription byproducts to threats to genome stability. Mol Cell 46, 115-124.
2. Allsopp, R.C., Cheshier, S., and Weissman, I.L. (2001). Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 193, 917-924. 3. Arnaudeau, C., Lundin, C., and Helleday, T. (2001). DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307, 1235-1245. 4. Arnoult, N., Van Beneden, A. & Decottignies, A. (2012). Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat. Struct Mol Biol 19, 948–956. 5. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798-801. 6. Bah, Amadou, Wischnewski, Harry, Shchepachev, Vadim, Azzalin, Claus M. (2012). The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res 40, 2995-3005 7. Balk, B., Maicher, A., Dees, M., Klermund, J., Luke-Glaser, S., Bender, K., and Luke, B. (2013). Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20, 1199-1205. 8. Batenburg, N.L., Mitchell, T.R., Leach, D.M., Rainbow, A.J., and Zhu, X.D. (2012). Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability. Nucleic Acids Res 40, 9661-9674. 9. Bermejo, R., Lai, M. S., Foiani, M. (2012). Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell 45, 710-718. 10. Calado, R.T., and Young, N.S. (2009). Telomere diseases. N Engl J Med 361, 2353-2365. 11. Cesare, A.J., and Griffith, J.D. (2004). Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol 24, 9948-9957. 12. Chan, C.S., and Tye, B.K. (1983). Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563-573. 13. Chen F., Nastasi A., Shen Z., Brenneman M., Crissman H., Chen D.J. (1997). Cell cycle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52. Mutat Res 384, 205-211. 14. Chen, Q., Ijpma, A., Greider, C. W. (2001). Two Survivor Pathways That Allow Growth in the Absence of Telomerase Are Generated by Distinct Telomere Recombination Events. Mol Cell Biol 21, 1819–1827. 15. Costa, A., Daidone, M.G., Daprai, L., Villa, R., Cantu, S., Pilotti, S., Mariani, L., Gronchi, A., Henson, J.D., Reddel, R.R., et al. (2006). Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res 66, 8918-8924. 16. Counter, C.M., Meyerson, M., Eaton, E.N., and Weinberg, R.A. (1997). The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A, 94, 9202-9207. 17. Cusanelli, E., and Chartrand, P. (2014). Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. Wiley Interdiscip Rev RNA 5, 407-419. 18. Cusanelli, E., Romero, C.A., and Chartrand, P. (2013). Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51, 780-791. 19. de Boer, J., and Hoeijmakers, J.H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460. 20. Daraba A., Gali V.K., Halmai M., Haracska L., Unk I. (2014). Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage--induced mutagenesis in Saccharomyces cerevisiae. PLoS Biol 12, e1001771. 21. Diderich, K., Alanazi, M., and Hoeijmakers, J.H. (2011). Premature aging and cancer in nucleotide excision repair-disorders. DNA repair 10, 772-780. 22. Drolet, M., Phoenix, P., Menzel, R., Masse, E., Liu, L.F., and Crouch, R.J. (1995). Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci U S A 92, 3526-3530. 23. Evans, E., Moggs, J.G., Hwang, J.R., Egly, J.M., and Wood, R.D. (1997). Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 16, 6559-6573. 24. Evans, S.K., and Lundblad, V. (2000). Positive and negative regulation of telomerase access to the telomere. J Cell Sci 19, 3357-3364 25. Gan, W., Guan, Z., Liu, J., Gui, T., Shen, K., Manley, J.L., and Li, X. (2011). R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25, 2041-2056. 26. Garvik, B., Carson, M., and Hartwell, L. (1995). Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15, 6128-6138. 27. Gomez-Gonzalez, B., Garcia-Rubio, M., Bermejo, R., Gaillard, H., Shirahige, K., Marin, A., Foiani, M., and Aguilera, A. (2011). Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J 30, 3106-3119. 28. Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751-762. 29. Gravel, S., Larrivee, M., Labrecque, P., and Wellinger, R.J. (1998). Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741-744. 30. Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413. 31. Groisman, R., Kuraoka, I., Chevallier, O., Gaye, N., Magnaldo, T., Tanaka, K., Kisselev, A.F., Harel-Bellan, A., and Nakatani, Y. (2006). CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20, 1429-1434. 32. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A.F., Tanaka, K., and Nakatani, Y. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357-367. 33. Haber, J.E. (1999). DNA recombination: the replication connection. Trends Biochem Sci 24, 271-275. 34. Harreman M., Taschner M., Sigurdsson S., Anindya R., Reid J., Somesh B., Kong S.E., Banks C.A., Conaway R.C., Conaway J.W., Svejstrup J.Q. (2009). Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc Natl Acad Sci U S A 106, 20705-20710. 35. Henning, K.A., Li, L., Iyer, N., McDaniel, L.D., Reagan, M.S., Legerski, R., Schultz, R.A., Stefanini, M., Lehmann, A.R., Mayne, L.V., et al. (1995). The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555-564. 36. Huertas, P., and Aguilera, A. (2003). Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12, 711-721. 37. Iglesias, N., Redon, S., Pfeiffer, V., Dees, M., Lingner, J., and Luke, B. (2011). Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 12, 587-593. 38. Kamiuchi, S., Saijo, M., Citterio, E., de Jager, M., Hoeijmakers, J. H., Tanaka, K. (2002). Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci U S A 99, 201-206. 39. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 226, 2011-2015. 40. Krogh, B.O., and Symington, L.S. (2004). Recombination proteins in yeast. Annu Rev Genet 38, 233-271. 41. Larrivee, M., and Wellinger, R.J. (2006). Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat Cell Biol 8, 741-747. 42. Le, S., Moore, J.K., Haber, J.E., and Greider, C.W. (1999). RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143-152. 43. Lee, S.K., Yu, S.L., Prakash, L., and Prakash, S. (2002). Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol Cell Biol 22, 4383-4389. 44. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996). Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412. 45. Li, X., and Manley, J.L. (2005). Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365-378. 46. Lin, C.Y., Chang, H.H., Wu, K.J., Tseng, S.F., Lin, C.C., Lin, C.P., and Teng, S.C. (2005). Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. Eukaryot Cell 4, 327-336. 47. Lin, J.J., and Zakian, V.A. (1996). The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93, 13760-13765. 48. Lin, Y.H., Chang, C.C., Wong, C.W., and Teng, S.C. (2009). Recruitment of Rad51 and Rad52 to short telomeres triggers a Mec1-mediated hypersensitivity to double-stranded DNA breaks in senescent budding yeast. PLoS One 4, e8224. 49. Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567. 50. Louis E.J., Naumova E.S., Lee A., Naumov G., Haber J.E. (1994). The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136, 789-802. 51. Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., and Lingner, J. (2008). The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32, 465-477. 52. Lundblad, V., and Blackburn, E.H. (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347-360. 53. Lundin, C., Erixon, K., Arnaudeau, C., Schultz, N., Jenssen, D., Meuth, M., and Helleday, T. (2002). Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol 22, 5869-5878. 54. Mangahas, J.L., Alexander, M.K., Sandell, L.L., and Zakian, V.A. (2001). Repair of chromosome ends after telomere loss in Saccharomyces. Mol Biol Cell 12, 4078-4089. 55. McClintock, B. (1941). The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234-282. 56. Montero J.J., López de Silanes I., Graña O., Blasco M.A. (2016). Telomeric RNAs are essential to maintain telomeres. Nat Commun 7, 125-134. 57. Mortensen, U.H., Bendixen, C., Sunjevaric, I., and Rothstein, R. (1996). DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A 93, 10729-10734. 58. Mu, D., and Sancar, A. (1997). Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J Biol Chem 272, 7570-7573. 59. McEachern, M.J., and Haber, J.E. (2006). Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75, 111-135. 60. Nabetani, A., and Ishikawa, F. (2011). Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J. Biochem 149, 5-14. 61. Nance, M.A., and Berry, S.A. (1992). Cockayne syndrome: review of 140 cases. Am J Med Genet 42, 68-84. 62. Newman, J. C., Bailey, A. D., Weiner, A. M. (2006). Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc Natl Acad Sci U S A 103, 9163-9168. 63. Nugent, C.I., Hughes, T.R., Lue, N.F., and Lundblad, V. (1996). Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252. 64. O'Donovan, A., Davies, A.A., Moggs, J.G., West, S.C., and Wood, R.D. (1994). XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature 371, 432-435. 65. Olovnikov, A.M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41, 181-190. 66. Ottaviani, A., Gilson, E., and Magdinier, F. (2008). Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 90, 93-107. 67. Pfeiffer, V. and J. Lingner (2012). TERRA Promotes Telomere Shortening through Exonuclease 1-Mediated Resection of Chromosome Ends. PLoS Genet 8, e1002747. 68. Pfeiffer, V., Crittin, J., Grolimund, L., and Lingner, J. (2013). The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J 32, 2861-2871. 69. Phatnani, H.P., Greenleaf, A.L. (2006). Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922-2936. 70. Porro, A., Feuerhahn S., Delafontaine J., Riethman H., Rougemont J., Lingner J. (2014). Functional characterization of the TERRA transcriptome at damaged telomeres. Nat Commun 5, 5379. 71. Reddel, R.R. (2000). The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21, 477-484. 72. Redon, S., Reichenbach, P., and Lingner, J. (2010). The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38, 5797-5806. 73. Ribar B., Prakash L., Prakash S. (2007). ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol Cell Biol 27, 3211-3216. 74. Roberts, R.W., and Crothers, D.M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463-1466. 75. Roeder, R.G., Schwartz, L.B., and Sklar, V.E. (1976). Function, structure, and regulation of eukaryotic nuclear RNA polymerases. Symp Soc Dev Biol 29-52. 76. Roy, D., and Lieber, M.R. (2009). G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol 29, 3124-3133. 77. Roy, D., Zhang, Z., Lu, Z., Hsieh, C.L., and Lieber, M.R. (2010). Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol 30, 146-159 78. Sandell, L.L., and Zakian, V.A. (1993). Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729-739. 79. Sarker A.H., Tsutakawa S.E., Kostek S., Ng C., Shin D.S., Peris M., Campeau E., Tainer J.A., Nogales E., Cooper P.K. (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 20, 187-198. 80. Schoeftner, S., and Blasco, M.A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10, 228-236. 81. Shay, J.W., and Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791. 82. Sijbers, A.M., de Laat, W.L., Ariza, R.R., Biggerstaff, M., Wei, Y.F., Moggs, J.G., Carter, K.C., Shell, B.K., Evans, E., de Jong, M.C., et al. (1996). Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811-822. 83. Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409. 84. Smith, J.R., and Pereira-Smith, O.M. (1996). Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67. 85. Somesh B.P., Sigurdsson S., Saeki H., Erdjument-Bromage H., Tempst P., Svejstrup J.Q. (2007). Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129, 57-68. 86. Steinmetz, E.J., Conrad, N.K., Brow, D.A., and Corden, J.L. (2001). RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 413, 327-331. 87. Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A.G., Aguilera, A., Struhl, K., Reed, R., et al. (2002). TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304-308. 88. Subhawong, A.P., Heaphy, C.M., Argani, P., Konishi, Y., Kouprina, N., Nassar, H., Vang, R., and Meeker, A.K. (2009). The alternative lengthening of telomeres phenotype in breast carcinoma is associated with HER-2 overexpression. Mod Pathol 22, 1423-1431. 89. Sugimoto, N., Nakano, S., Katoh, M., Matsumura, A., Nakamuta, H., Ohmichi, T., Yoneyama, M., and Sasaki, M. (1995). Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211-11216. 90. Symington, L.S. (2002). Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66, 630-670. 91. Taggart, A.K., Teng, S.C., and Zakian, V.A. (2002). Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023-1026. 92. Teng, S.C., Chang, J., McCowan, B., and Zakian, V.A. (2000). Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6, 947-952. 93. Teng, S.C., and Zakian, V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19, 8083-8093. 94. Thomas, M., White, R.L., and Davis, R.W. (1976). Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci U S A 73, 2294-2298. 95. Tomaska, L., McEachern, M.J., and Nosek, J. (2004). Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567, 142-146. 96. Troelstra, C., van Gool, A., de Wit, J., Vermeulen, W., Bootsma, D., and Hoeijmakers, J.H. (1992). ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71, 939-953. 97. Vasiljeva, L., and Buratowski, S. (2006). Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21, 239-248. 98. Venema, J., Mullenders, L.H., Natarajan, A.T., van Zeeland, A.A., and Mayne, L.V. (1990). The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci U S A 87, 4707-4711. 99. Verma R., Oania R., Fang R., Smith G.T., Deshaies R.J. (2011). Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol Cell 41, 82-92. 100. Virta-Pearlman, V., Morris, D.K., and Lundblad, V. (1996). Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev 10, 3094-3104. 101. Wang, J.C. (1971). Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 55, 523-533. 102. Wei L., Nakajima S., Böhm S., Bernstein K.A., Shen Z., Tsang M., Levine A.S., Lan L. (2015). DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc Natl Acad Sci U S A 112, e3495-504. 103. Winkler, G.S., and Hoeijmakers, J.H. (1998). From a DNA helicase to brittle hair. Nat Genet 20, 106-107. 104. Wilson, M.D., Harreman, M., and Svejstrup, J.Q. (2013). Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim Biophys Acta 1829, 151–157. 105. Wilson M.D., Harreman M., Taschner M., Reid J., Walker J., Erdjument-Bromage H., Tempst P., Svejstrup J.Q. (2013). Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 154, 983-995. 106. Woudstra, E.C., Gilbert, C., Fellows, J., Jansen, L., Brouwer, J., Erdjument-Bromage, H., Tempst, P., and Svejstrup, J.Q. (2002). A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929-933. 107. Yehezakel,S., Segev,Y., Viegas-Pequignot,E., Skorecki,K., and Selig,S. (2008). Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum. Mol. Genet. 17, 2776-2789. 108. Yu, T.Y., Kao, Y.W., and Lin, J.J. (2014). Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A 111, 3377-3382. 109. Zakian, V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18870 | - |
dc.description.abstract | 端粒是位於真核生物染色體末端的特殊結構,在細胞中扮演著重要腳色,功能為防止染色體間互相融合、保護染色體的完整複製以及穩定染色體末端結構。缺少端粒會造成細胞的老化及死亡。由於DNA末端複製的缺陷,端粒會隨著細胞複製次數的增加而逐漸縮短,以人類體細胞為例,大約分裂複製60至80次後,端粒因過短無法再保護DNA,而產生複製性衰老 (senescence) 的現象。然而,癌細胞卻可以逃過老化的命運,約85%的癌細胞可以透過活化端粒酶來重新複製端粒,使得癌細胞得以大量增生成為腫瘤; 約15%的癌細胞則會利用端粒重組(telomere recombination) 的機制來維持端粒長度,此類細胞稱作alternative lengthening of telomeres (ALT) cells。在酵母菌中,Rad52是調控端粒重組的重要蛋白,缺乏端粒酶活性的細胞會利用Rad52 蛋白調控的端粒重組機制來逃過複製性衰老,而這些逃過老化存活下來的細胞被稱作survivors。近來發現,端粒基因可被聚合酶(RNA polymerase II)轉錄成長片段的non-coding RNA,簡稱TERRA (long non-coding telomeric repeat-containing RNA)。TERRA與端粒的序列都有著G-rich的特性,所以容易與互相配對形成DNA:RNA和單股DNA的R-loop結構。這樣的結構存在會使得轉錄中的聚合酶受到阻礙而停滯,停滯聚合酶被視為細胞的損害,必須經由轉錄合併修復(transcription-coupled repair, TCR)或泛素化蛋白降 (ubiquitin-mediated proteolysis)等相關的方式來移除stalled polymerase。我們先前研究發現,TERRA、R-loop以及停滯的polymerase可能會經由引發類似於TCR的機制而促使端粒重組的發生。由於細胞利用端粒重組逃過老化產生survivor的背後機制尚未明瞭,故本篇研究利用染色質免疫沉澱 (ChIP) 的方法,在端粒酶缺失的年輕至老化細胞,分析其端粒重組蛋白Rad52、MRN complex或者RNA polymerase II 在端粒序列上的變化。我們發現,在酵母菌細胞的老化過程中,不管是Rad52或RNA polymerase並不會特別累積在特定代數的細胞。然而,當Def1 (RNA polymerase degradation factor)蛋白突變後,則可以發現Rad52及RNA polymerase II會大量累積在端粒上,初步推測Def1可能是經由影響chromatin structure而造成蛋白的累積。 | zh_TW |
dc.description.abstract | Telomere, the end structure of eukaryotic chromosome, plays an important role in cellular function that allows complete replication and maintains the integrity of chromosomes. Due to the end-replication problem, the telomeres are shortened upon each cell division that eventually leads to replicative senescence. Normal human somatic cells enter senescence after ~60-80 cell divisions. Most of the cancer cells overcome senescence by activating telomerase, whereas 10-15% of the cancer cells use alternative lengthening of telomeres (ALT) pathway. The ALT pathway is mediated by mechanism through homologous recombination (HR). In Saccharomyces cerevisiae, cells that lack the telomerase RNA component, TLC1, stop dividing after ~70 cell divisions. Only rare survivors escape senescence by maintaining their telomeres through a radiation sensitive 52 (RAD52)-dependent recombination mechanism. The mechanism of how homologous recombination is activated during senescence is less clear. Telomere are transcribed into a long non-coding telomeric repeat-containing RNA, TERRA, by RNA polymerase II. TERRA can bind to telomere to form an R-loop structure which may impede the progression RNA polymerase and trigger recombination mechanism. Generally, the stalled RNA polymerase is repaired by the transcription-coupled repair (TCR) machinery or degraded by the ubiquitin-mediated proteolysis. Here the role of stalled RNAPII in Rad52-dependent telomere recombination is tested. Using chromatin immunoprecipitation (ChIP), the amount of Rad52, Mre11, and RNAPII on telomere during survivor formation are determined in Saccharomyces cerevisiae. I found that mutation in DEF1, which encodes an RNAPII degradation factor, increased the accumulation of Rad52 and RNA polymerase in telomerase-negative cells. The results indicated that stalled RNAPII may induce telomere recombination, supporting that the R-loop structure formed by TERRA might stall RNA polymerase progression to induce transcription-mediated telomere recombination. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:38:07Z (GMT). No. of bitstreams: 1 ntu-105-R03442014-1.pdf: 2621247 bytes, checksum: 0601dc5ca17492fd120978e6574a0070 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書……………………………………………………… i
誌謝…………………………………………………………………… ii 中文摘要……………………………………………………………… iii 英文摘要……………………………………………………………… iv 目錄…………………………………………………………………… v 圖目錄………………………………………………………………… vi 縮寫檢索表……………………………………………………………vii 前言…………………………………………………………………… 1 材料方法……………………………………………………………… 9 實驗結果……………………………………………………………… 20 討論…………………………………………………………………… 25 參考文獻……………………………………………………………… 28 附圖…………………………………………………………………… 36 | |
dc.language.iso | zh-TW | |
dc.title | 探討酵母菌中轉錄相關之端粒重組機制 | zh_TW |
dc.title | Analyzing the mechanism of transcription-mediated telomere recombination in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧述諄,鄭子豪 | |
dc.subject.keyword | transcription-associated recombination,telomere,Rad52,Rad26,Def1, | zh_TW |
dc.relation.page | 45 | |
dc.identifier.doi | 10.6342/NTU201603682 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-10-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。