請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅仁權(Ren C. Luo) | |
| dc.contributor.author | Che-Wei Liu | en |
| dc.contributor.author | 劉哲瑋 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:25:41Z | - |
| dc.date.copyright | 2014-08-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-31 | |
| dc.identifier.citation | [1] N. Li, S. Ma, B. Li, M. Wang, and Y. Wang, “An Online Stair-Climbing Control Method for a Transformable Tracked Robot,” in IEEE International Conference on Robotics and Automation (ICRA), 2012.
[2] Y. Liu and G. Liu, “Track-Stair Interaction Analysis and Online Tipover Prediction for a Self-Reconfigurable Tracked Mobile Robot Climbing Stairs,” in IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 528–538, 2009. [3] E. Mihankhah, A. Kalantari, E. Aboosaeedan, H. Taghirad, and S. A. A. Moosavian, “Autonomous Staircase Detection and Stair Climbing for a Tracked Mobile Robot Using Fuzzy Controller,” in IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009. [4] P. Tantichattanont, S. Songschon, and S. Laksanacharoen, 'Quasi-static Analysis of a Leg-wheel Hybrid Vehicle for Enhancing Stair Climbing Ability,' in IEEE International Conference on Robotics and Biomimetics (ROBIO), 2007, pp. 1601 - 1605. [5] J. Yuan, R. Paisley, S. Yongtao and Z. Weijun, 'Virtual Realization of Automatic Stair-Climbing Motion by Leg-Wheeled Hybrid Mobile Robot.' In IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010, pp. 1352 - 1357. [6] S.-C. Chen, K.-J. Huang, W.-H. Chen, S.-Y. Shen, C.-H. Li and P.-C. Lin, 'Quattroped: A Leg--Wheel Transformable Robot.' in IEEE/ASME Transactions on Mechatronics, vol. 19, pp. 730-742, 2014. [7] B. Sheng, M. Huaqing, L. Qifeng and Z. Xijing, 'Multi-Objective Optimization for a Humanoid Robot Climbing Stairs based on Genetic Algorithms.' in IEEE International Conference on Information and Automation, 2009. [8] S. Osswald, J.-S. Gutmann, A. Hornung, and M. Bennewitz, 'From 3D Point Clouds to Climbing Stairs: A Comparison of Plane Segmentation Approaches for Humanoids.' in 11th IEEE-RAS International Conference on Humanoid Robots, 2011. [9] S. Osswald, A. Gorog, A. Hornung, and M. Bennewitz, 'Autonomous Climbing of Spiral Staircases with Humanoids.' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), sept. 2011, pp. 4844-4849. [10] C. Fu, K. Chen, “Gait Synthesis and Sensory Control of Stair Climbing for a Humanoid Robot”, in IEEE Transactions on industrial electronics, vol. 55, pp.2111-2120, 2008. [11] R. C. Luo, M. Hsiao, T.-W. Lin, “Erect Wheel-Legged Stair Climbing Robot for Indoor Service Applications,” in IEEE International Conference on Intelligent Robots and Systems, 2013. [12] Segway Inc. (2013). The Segway PT: An Overview [Online]. Available: http://www.segway.com/about-segway/learn-how-PTs-work.php [13] Construction law in Taiwan. General building code [Online]. Available: http://civil.njtc.edu.tw/weng/ConstructionLaw/textbook/ch5_general_building_design_code.htm [14] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in IEEE International Conference on Computer Vision Workshops, 2011. [15] Bolton, W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 3rd edition Pearson Education, 2004. [16] K. Mitobe, S. Kaneko, T. Oka, Y. Nasu, and G. Capi, “Control of Legged Robots during the Multi Supported Phase based on the Locally Defined ZMP” in IEEE/RSJ International Conference on Intelligent Robots and systems (IROS), 2004. [17] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: a step toward humanoid push recovery,” in IEEE-RAS International Conference on Humanoid Robots, 2006. [18] H. Kwakernaak, R. Sivan. Linear optimal control systems. Vol. 1. New York: Wiley-interscience, 1972. [19] R. C. Luo, M. Hsiao, C.-W. Liu, “Multisensor Integrated Stair Recognition and Parameters Measurement System for Dynamic Stair Climbing Robots,” in IEEE International Conference on Automation Science and Engineering (CASE), 2013. [20] J. Hesch, G. Mariottini, and S. Roumeliotis, “Descending-Stair Detection, Approach, and Traversal with an Autonomous Tracked Vehicle,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010 [21] J. A. Delmerico, D. Baran, P. David, J. Ryde, J. J. Corso, “Ascending Stairway Modeling from Dense Depth Imagery for Traversability Analysis,” in IEEE International Conference on Robotics and Automation (ICRA), 2013. [22] M.A Fischer, R.C Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Communication of ACM, J. vol. 24, pp.381-395,1981. [23] H. Bay, T. Tuytelaars, L. V. Gool, “SURF: Speeded up robust features,” Proc. of the 9th European Conf. Computer Vision, pp. 404-417, 2006. [24] P. Besl, N. McKay, 'A Method for Registration of 3-D Shapes'. IEEE Trans. on Pattern Analysis and Machine Intelligence,Vol. 12,No. 2, pp. 239-256, 1992. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18782 | - |
| dc.description.abstract | 在最近幾年,服務型機器人是一個非常流行的研究主題在機器人的領域。而現在有很多室內服務機器人已經被開發出來。但大多數這些服務機器人只能在單一樓層且只能在平坦地面執行任務。因此,我們實驗室已經設計出了一個室內爬樓梯機器人,可以在平坦的地面上平穩地移動像室內輪型機器人,並具有上下樓梯的能力。
在之前的研究中,我們已經測試了上樓梯的能力,並提出了一個上樓梯的樓梯識別算法。然而對於爬樓梯機器人進行室內多樓層的服務這是不夠的。為了進行室內多樓層的服務,爬樓梯機器人必須俱備一些基本的能力。 1)能夠行走於平整的地面。 2)能夠上下樓梯。 3)能夠識別樓梯。 在這篇論文中,我們完成了之前還沒做到的部分。首先,我們測試下樓梯的能力並且使爬樓梯機器人比以前能夠更穩定的爬樓梯。其次,除了上樓梯的樓梯識別算法,我們還完成下樓梯的樓梯識別算法。最後,我們提出了一個3D的SLAM(同時建地圖並定位)演算法可以同時記錄樓梯模型的參數。 綜上所述,我們分別實現爬樓梯機器人進行室內多樓層的服務的基本能力。這對於爬樓梯機器人來說是非常重要的。而我們希望在未來爬樓梯機器人能夠基於這些基本能力進行更多的應用。 | zh_TW |
| dc.description.abstract | Service robot becomes more important issues in recent years. There are many indoor service robots have been developed. Most of those service robots only can perform tasks on the single floor and on the flat ground. Therefore, we develop an indoor climbing robot that can move smoothly on the flat ground like indoor mobile robot and have ability of climbing up and down stairs.
In previous work, we test the ability of climbing up stair and propose an up-stair recognition algorithm. However, it is not enough for stair climbing robot to perform indoor cross-floor services. In order to perform indoor cross-floor services, stair climbing robot must have some basic abilities. 1) ability to travel around on the flat ground. 2) ability to climbing up and down stairs. 3) ability to recognize stairs. In this thesis, we complete tasks that have not been done before. First, we test ability of climbing down stairs and make stair climbing robot to climb stairs more stable than ever. Second, besides up-stair recognition algorithm, we also complete down-stair recognition algorithm. Finally, we propose a 3D SLAM (Simultaneous Localization and Mapping) algorithm with information of parameters of stair model. In summary, we achieve basic abilities for stair climbing robot to perform indoor cross-floor services separately. It is very significant for stair climbing robot. We hope that we can make stair climbing robot to perform more applications in the future based on those basic abilities. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:25:41Z (GMT). No. of bitstreams: 1 ntu-103-R01921010-1.pdf: 5394663 bytes, checksum: 7cf40a229c166d7a52c196f86a86d503 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 #
誌謝 I 中文摘要 II ABSTRACT III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1 1.1 ERA OF ROBOT 1 1.2 MOTIVATION AND OBJECTIVES 2 1.3 THESIS ORGANIZATION 3 CHAPTER 2 BACKGROUND AND CONCEPTS 5 2.1 MECHANISMS OF STAIR CLIMBING ROBOT 5 2.1.1 General Structure 6 2.1.2 Rules and Limitations 6 2.1.3 Transmission System 7 2.1.4 Spring Assemblies 8 2.2 SENSORS OF INDOOR SERVICE ROBOT 9 2.2.1 Inertial Measurement Unit(IMU) 9 2.2.2 Kinect 11 2.2.3 Motor Assemblies 13 CHAPTER 3 LOCOMOTION PRINCIPLES 14 3.1 DYNAMIC MODEL 15 3.2 DYNAMIC ANALYSIS 18 3.2.1 Virtual Slope and Virtual Zero Moment Point 18 3.2.2 Capture Point 19 3.2.3 Constraints 20 3.2.4 Intersection Points 21 3.2.5 Discussions 22 CHAPTER 4 CONTROL STRATEGIES 25 4.1 TRAVELING ON THE FLAT GROUND 25 4.1.1 Moving Forward and Backward 25 4.1.2 Turning with Zero Radius 25 4.2 SOMATOSENSORY CONTROL OF HUMAN RIDER 26 4.3 CLIMBING STAIRS 28 CHAPTER 5 STAIR RECOGNITION 30 5.1 UP-STAIR RECOGNITION AND MEASUREMENT 30 5.2 DOWN-STAIR RECOGNITION AND MEASUREMENT 39 CHAPTER 6 INDOOR 3D SLAM 43 6.1 FEATURES 43 7.1 3D SLAM 44 CHAPTER 7 EXPERIMENTAL RESULTS 52 7.1 PROCEDURES 52 7.2 RESULTS 52 7.3 DISCUSSIONS 55 CHAPTER 8 CONCLUSION AND FUTURE WORKS 56 8.1 CONCLUSIONS AND CONTRIBUTIONS 56 8.2 FUTURE WORKS 57 REFERENCES 58 VITA 62 | |
| dc.language.iso | en | |
| dc.title | 俱三維同時定位及建地圖功能之直立式爬樓梯智慧機器人應用於室內多樓層服務 | zh_TW |
| dc.title | Erect Stair Climbing Robot with 3D SLAM for Indoor Cross-Floor Services | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張帆人(Fan-ren Chang) | |
| dc.contributor.oralexamcommittee | 黃國勝(Kao-Shing Hwang) | |
| dc.subject.keyword | 爬樓梯機器人,服務型機器人,3D同時建地圖並定位,系統設計整合,樓梯辨識, | zh_TW |
| dc.subject.keyword | stair climbing robot,service robot,3D SLAM,system integration,stair recognition, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
