Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18779
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李心予(Hsinyu Lee)
dc.contributor.authorYa-Hsuan Hoen
dc.contributor.author何亞軒zh_TW
dc.date.accessioned2021-06-08T01:25:27Z-
dc.date.available2030-01-01-
dc.date.copyright2014-08-14
dc.date.issued2014
dc.date.submitted2014-08-01
dc.identifier.citationAbu-Remaileh, M., Gerson, A., Farago, M., Nathan, G., Alkalay, I., Zins Rousso, S., Gur, M., Fainsod, A., and Bergman, Y. (2010). Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/beta-catenin signalling. The EMBO journal 29, 3236-3248.
Aoki, J. (2004). Mechanisms of lysophosphatidic acid production. Seminars in cell & developmental biology 15, 477-489.
Aoki, J., Taira, A., Takanezawa, Y., Kishi, Y., Hama, K., Kishimoto, T., Mizuno, K., Saku, K., Taguchi, R., and Arai, H. (2002). Serum lysophosphatidic acid is produced through diverse phospholipase pathways. The Journal of biological chemistry 277, 48737-48744.
Bluteau, O., Langlois, T., Rivera-Munoz, P., Favale, F., Rameau, P., Meurice, G., Dessen, P., Solary, E., Raslova, H., Mercher, T., et al. (2013). Developmental changes in human megakaryopoiesis. Journal of thrombosis and haemostasis : JTH 11, 1730-1741.
Bouilloux, F., Juban, G., Cohet, N., Buet, D., Guyot, B., Vainchenker, W., Louache, F., and Morle, F. (2008). EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 112, 576-584.
Chiang, C.L., Chen, S.S., Lee, S.J., Tsao, K.C., Chu, P.L., Wen, C.H., Hwang, S.M., Yao, C.L., and Lee, H. (2011). Lysophosphatidic acid induces erythropoiesis through activating lysophosphatidic acid receptor 3. Stem cells 29, 1763-1773.
Choi, E.S., Nichol, J.L., Hokom, M.M., Hornkohl, A.C., and Hunt, P. (1995). Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 85, 402-413.
Crossley, M., Tsang, A.P., Bieker, J.J., and Orkin, S.H. (1994). Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. The Journal of biological chemistry 269, 15440-15444.
Dimitriou, H., Vorgia, P., Stiakaki, E., Mavroudis, D., Markaki, E.A., Koumantakis, E., and Kalmanti, M. (2003). In vitro proliferative and differentiating characteristics of CD133(+) and CD34(+) cord blood cells in the presence of thrombopoietin (TPO) or erythropoietin (EPO). Potential implications for hematopoietic cell transplantation. Leukemia research 27, 1143-1151.
Dravid, G., Ye, Z., Hammond, H., Chen, G., Pyle, A., Donovan, P., Yu, X., and Cheng, L. (2005). Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem cells 23, 1489-1501.
Eisbacher, M., Holmes, M.L., Newton, A., Hogg, P.J., Khachigian, L.M., Crossley, M., and Chong, B.H. (2003). Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Molecular and cellular biology 23, 3427-3441.
Elagib, K.E., Racke, F.K., Mogass, M., Khetawat, R., Delehanty, L.L., and Goldfarb, A.N. (2003). RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101, 4333-4341.
Eliades, A., Matsuura, S., and Ravid, K. (2012). Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. Journal of cellular physiology 227, 3355-3362.
Evseenko, D., Latour, B., Richardson, W., Corselli, M., Sahaghian, A., Cardinal, S., Zhu, Y., Chan, R., Dunn, B., and Crooks, G.M. (2013). Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment. PloS one 8, e63718.
Frachet, P., Duperray, A., Delachanal, E., and Marguerie, G. (1992). Role of the transmembrane and cytoplasmic domains in the assembly and surface exposure of the platelet integrin GPIIb/IIIa. Biochemistry 31, 2408-2415.
Fujiwara, Y., Sardar, V., Tokumura, A., Baker, D., Murakami-Murofushi, K., Parrill, A., and Tigyi, G. (2005). Identification of residues responsible for ligand recognition and regioisomeric selectivity of lysophosphatidic acid receptors expressed in mammalian cells. J Biol Chem 280, 35038-35050.
Gamaley, I.A., and Klyubin, I.V. (1999). Roles of reactive oxygen species: signaling and regulation of cellular functions. International review of cytology 188, 203-255.
Gan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P., and Li, L. (2008). Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. The Journal of cell biology 180, 1087-1100.
Golub, R., and Cumano, A. (2013). Embryonic hematopoiesis. Blood cells, molecules & diseases 51, 226-231.
Gupta, S.C., Hevia, D., Patchva, S., Park, B., Koh, W., and Aggarwal, B.B. (2012). Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxidants & redox signaling 16, 1295-1322.
Hama, K., Bandoh, K., Kakehi, Y., Aoki, J., and Arai, H. (2002). Lysophosphatidic acid (LPA) receptors are activated differentially by biological fluids: possible role of LPA-binding proteins in activation of LPA receptors. FEBS letters 523, 187-192.
Han, D., Williams, E., and Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353, 411-416.
Hasegawa, Y., Erickson, J.R., Goddard, G.J., Yu, S., Liu, S., Cheng, K.W., Eder, A., Bandoh, K., Aoki, J., Jarosz, R., et al. (2003). Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. The Journal of biological chemistry 278, 11962-11969.
Houben, A.J., and Moolenaar, W.H. (2011). Autotaxin and LPA receptor signaling in cancer. Cancer metastasis reviews 30, 557-565.
Huang, C.L., Cheng, J.C., Liao, C.H., Stern, A., Hsieh, J.T., Wang, C.H., Hsu, H.L., and Tseng, C.P. (2004). Disabled-2 is a negative regulator of integrin alpha(IIb)beta(3)-mediated fibrinogen adhesion and cell signaling. The Journal of biological chemistry 279, 42279-42289.
Huang, H., Yu, M., Akie, T.E., Moran, T.B., Woo, A.J., Tu, N., Waldon, Z., Lin, Y.Y., Steen, H., and Cantor, A.B. (2009). Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Molecular and cellular biology 29, 4103-4115.
Hunt, P. (1995). A bipotential megakaryocyte/erythrocyte progenitor cell: the link between erythropiesis and megakaryopoiesis becomes stronger. The Journal of laboratory and clinical medicine 125, 303-304.
Ikonomi, P., Rivera, C.E., Riordan, M., Washington, G., Schechter, A.N., and Noguchi, C.T. (2000). Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Experimental hematology 28, 1423-1431.
Iwasaki, H., Mizuno, S., Wells, R.A., Cantor, A.B., Watanabe, S., and Akashi, K. (2003). GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 19, 451-462.
Jackson, C.W. (1990). Megakaryocyte endomitosis: a review. International journal of cell cloning 8, 224-226.
Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S., Legros, L., Deckert, M., Mari, B., Cassuto, J.P., et al. (2006). A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25, 781-794.
Kato, K., Yoshikawa, K., Tanabe, E., Kitayoshi, M., Fukui, R., Fukushima, N., and Tsujiuchi, T. (2012). Opposite roles of LPA1 and LPA3 on cell motile and invasive activities of pancreatic cancer cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 33, 1739-1744.
Kauffman, J.S., and Raff, R.A. (2003). Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma. Development genes and evolution 213, 612-624.
Kim, J.A., Kang, Y.J., Park, G., Kim, M., Park, Y.O., Kim, H., Leem, S.H., Chu, I.S., Lee, J.S., Jho, E.H., et al. (2009). Identification of a stroma-mediated Wnt/beta-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche. Stem cells 27, 1318-1329.
Kimelman, D., and Xu, W. (2006). beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25, 7482-7491.
Kishida, S., Yamamoto, H., Hino, S., Ikeda, S., Kishida, M., and Kikuchi, A. (1999). DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Molecular and cellular biology 19, 4414-4422.
Komachi, M., Tomura, H., Malchinkhuu, E., Tobo, M., Mogi, C., Yamada, T., Kimura, T., Kuwabara, A., Ohta, H., Im, D.S., et al. (2009). LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis 30, 457-465.
Krumsiek, J., Marr, C., Schroeder, T., and Theis, F.J. (2011). Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PloS one 6, e22649.
le Balle, F., Simon, M.F., Meijer, S., Fourcade, O., and Chap, H. (1999). Membrane sidedness of biosynthetic pathways involved in the production of lysophosphatidic acid. Advances in enzyme regulation 39, 275-284.
Leary, J.F., Farley, B.A., Giuliano, R., Kosciolek, B.A., La Bella, S., and Rowley, P.T. (1987). Induction of megakaryocytic characteristics in human leukemic cell line K562: polyploidy, inducers, and secretion of mitogenic activity. Journal of biological regulators and homeostatic agents 1, 73-80.
Lee, R., Kertesz, N., Joseph, S.B., Jegalian, A., and Wu, H. (2001). Erythropoietin (Epo) and EpoR expression and 2 waves of erythropoiesis. Blood 98, 1408-1415.
Li, H., Yue, R., Wei, B., Gao, G., Du, J., and Pei, G. (2014). Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis. The EMBO journal.
Lin, C.C., Lin, C.E., Lin, Y.C., Ju, T.K., Huang, Y.L., Lee, M.S., Chen, J.H., and Lee, H. (2013). Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells. Biochemical and biophysical research communications 440, 564-569.
Lin, M.E., Herr, D.R., and Chun, J. (2010). Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins & other lipid mediators 91, 130-138.
Liu, Y.B., Kharode, Y., Bodine, P.V., Yaworsky, P.J., Robinson, J.A., and Billiard, J. (2010). LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. Journal of cellular biochemistry 109, 794-800.
Lozzio, C.B., and Lozzio, B.B. (1975). Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321-334.
MacDonald, B.T., Tamai, K., and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell 17, 9-26.
Malbon, C.C. (2005). Beta-catenin, cancer, and G proteins: not just for frizzleds anymore. Science's STKE : signal transduction knowledge environment 2005, pe35.
Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., Proksch, E., de Strooper, B., Hartmann, D., and Saftig, P. (2005). ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proceedings of the National Academy of Sciences of the United States of America 102, 9182-9187.
Metcalf, D., Carpinelli, M.R., Hyland, C., Mifsud, S., Dirago, L., Nicola, N.A., Hilton, D.J., and Alexander, W.S. (2005). Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene. Blood 105, 3480-3487.
Miki, T., Yasuda, S.Y., and Kahn, M. (2011). Wnt/beta-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem cell reviews 7, 836-846.
Moolenaar, W.H. (1994). LPA: a novel lipid mediator with diverse biological actions. Trends in cell biology 4, 213-219.
Moolenaar, W.H., Kranenburg, O., Postma, F.R., and Zondag, G.C. (1997). Lysophosphatidic acid: G-protein signalling and cellular responses. Current opinion in cell biology 9, 168-173.
Moon, R.T., Kohn, A.D., De Ferrari, G.V., and Kaykas, A. (2004). WNT and beta-catenin signalling: diseases and therapies. Nature reviews Genetics 5, 691-701.
Muller, F. (2000). The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. Journal of the American Aging Association 23, 227-253.
Nakanaga, K., Hama, K., and Aoki, J. (2010). Autotaxin--an LPA producing enzyme with diverse functions. Journal of biochemistry 148, 13-24.
Noguchi, K., Herr, D., Mutoh, T., and Chun, J. (2009). Lysophosphatidic acid (LPA) and its receptors. Current opinion in pharmacology 9, 15-23.
Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., et al. (2003). Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Molecular pharmacology 64, 994-1005.
Orkin, S.H., and Zon, L.I. (2008). Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644.
Ortlepp, C., Steudel, C., Heiderich, C., Koch, S., Jacobi, A., Ryser, M., Brenner, S., Bornhauser, M., Brors, B., Hofmann, W.K., et al. (2013). Autotaxin is expressed in FLT3-ITD positive acute myeloid leukemia and hematopoietic stem cells and promotes cell migration and proliferation. Experimental hematology 41, 444-461 e444.
Pang, L., Weiss, M.J., and Poncz, M. (2005). Megakaryocyte biology and related disorders. The Journal of clinical investigation 115, 3332-3338.
Perry, J.M., He, X.C., Sugimura, R., Grindley, J.C., Haug, J.S., Ding, S., and Li, L. (2011). Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes & development 25, 1928-1942.
Prestwich, G.D., Xu, Y., Qian, L., Gajewiak, J., and Jiang, G. (2005). New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors. Biochemical Society transactions 33, 1357-1361.
Ramsey, M.R., and Sharpless, N.E. (2006). ROS as a tumour suppressor? Nature cell biology 8, 1213-1215.
Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., de Strooper, B., Hartmann, D., and Saftig, P. (2005). ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. The EMBO journal 24, 742-752.
Sando, J.J., and Chertihin, O.I. (1996). Activation of protein kinase C by lysophosphatidic acid: Dependence on composition of phospholipid vesicles. Biochem J 317, 583-588.
Sardina, J.L., Lopez-Ruano, G., Sanchez-Abarca, L.I., Perez-Simon, J.A., Gaztelumendi, A., Trigueros, C., Llanillo, M., Sanchez-Yague, J., and Hernandez-Hernandez, A. (2010). p22phox-dependent NADPH oxidase activity is required for megakaryocytic differentiation. Cell death and differentiation 17, 1842-1854.
Scheller, M., Huelsken, J., Rosenbauer, F., Taketo, M.M., Birchmeier, W., Tenen, D.G., and Leutz, A. (2006). Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nature immunology 7, 1037-1047.
Shelly, C., Petruzzelli, L., and Herrera, R. (2000). K562 cells resistant to phorbol 12-myristate 13-acetate-induced growth arrest: dissociation of mitogen-activated protein kinase activation and Egr-1 expression from megakaryocyte differentiation. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 11, 501-506.
Shinohara, A., Imai, Y., Nakagawa, M., Takahashi, T., Ichikawa, M., and Kurokawa, M. (2014). Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors. Stem cells 32, 548-557.
Starck, J., Cohet, N., Gonnet, C., Sarrazin, S., Doubeikovskaia, Z., Doubeikovski, A., Verger, A., Duterque-Coquillaud, M., and Morle, F. (2003). Functional cross-antagonism between transcription factors FLI-1 and EKLF. Molecular and cellular biology 23, 1390-1402.
Sutherland, J.A., Turner, A.R., Mannoni, P., McGann, L.E., and Turc, J.M. (1986). Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages. Journal of biological response modifiers 5, 250-262.
Takeshita, A., Shinjo, K., Naito, K., Nakamura, S., Izumi, M., Ling, P., Ohnishi, K., and Ohno, R. (1997). Amount of mpl on bone marrow haemopoietic precursor cells from healthy volunteers and patients with refractory anaemia. British journal of haematology 99, 746-755.
Tran, H.T., Sekkali, B., Van Imschoot, G., Janssens, S., and Vleminckx, K. (2010). Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. Proceedings of the National Academy of Sciences of the United States of America 107, 16160-16165.
Tsukahara, T. (2013). PPAR gamma Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid. Journal of lipids 2013, 246597.
Valentine, W.J., Fujiwara, Y., Tsukahara, R., and Tigyi, G. (2008). Lysophospholipid signaling: beyond the EDGs. Biochimica et biophysica acta 1780, 597-605.
van Meeteren, L.A., and Moolenaar, W.H. (2007). Regulation and biological activities of the autotaxin-LPA axis. Progress in lipid research 46, 145-160.
Villeval, J.L., Pelicci, P.G., Tabilio, A., Titeux, M., Henri, A., Houesche, F., Thomopoulos, P., Vainchenker, W., Garbaz, M., Rochant, H., et al. (1983). Erythroid properties of K562 cells. Effect of hemin, butyrate and TPA induction. Experimental cell research 146, 428-435.
Virag, T., Elrod, D.B., Liliom, K., Sardar, V.M., Parrill, A.L., Yokoyama, K., Durgam, G., Deng, W., Miller, D.D., and Tigyi, G. (2003). Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors. Molecular pharmacology 63, 1032-1042.
Waris, G., and Ahsan, H. (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of carcinogenesis 5, 14.
Wilusz, M., and Majka, M. (2008). Role of the Wnt/beta-catenin network in regulating hematopoiesis. Archivum immunologiae et therapiae experimentalis 56, 257-266.
Wolf, N.S., Bertoncello, I., Jiang, D., and Priestley, G. (1995). Developmental hematopoiesis from prenatal to young-adult life in the mouse model. Experimental hematology 23, 142-146.
Woll, P.S., Morris, J.K., Painschab, M.S., Marcus, R.K., Kohn, A.D., Biechele, T.L., Moon, R.T., and Kaufman, D.S. (2008). Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 111, 122-131.
Yamamori, T., Yasui, H., Yamazumi, M., Wada, Y., Nakamura, Y., Nakamura, H., and Inanami, O. (2012). Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free radical biology & medicine 53, 260-270.
Yanai, N., Matsui, N., Furusawa, T., Okubo, T., and Obinata, M. (2000). Sphingosine-1-phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers. Blood 96, 139-144.
Yang, J., Nie, Y., Wang, F., Hou, J., Cong, X., Hu, S., and Chen, X. (2013). Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy. Biochimica et biophysica acta 1831, 1386-1394.
Yang, M., Zhong, W.W., Srivastava, N., Slavin, A., Yang, J., Hoey, T., and An, S. (2005). G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America 102, 6027-6032.
Zhao, C., Blum, J., Chen, A., Kwon, H.Y., Jung, S.H., Cook, J.M., Lagoo, A., and Reya, T. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer cell 12, 528-541.
Zhu, J., and Emerson, S.G. (2002). Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295-3313.
Zimmet, J., and Ravid, K. (2000). Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Experimental hematology 28, 3-16.
Zutter, M.M., Painter, A.A., Staatz, W.D., and Tsung, Y.L. (1995). Regulation of alpha 2 integrin gene expression in cells with megakaryocytic features: a common theme of three necessary elements. Blood 86, 3006-3014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18779-
dc.description.abstract紅血球與巨核細胞源自於相同的血球前驅細胞特化而成。在我們過去的研究中發現,水解磷酸脂 (Lysophosphatidic acid, LPA) 經由活化特定的水解磷酸脂受器,參與了紅血球生成的調控。因此,本篇研究進一步利用K562人類血癌細胞株來探討LPA於巨核細胞分化所扮演之角色。實驗結果顯示,在TPA (12-O-Tetradecanoylphorbol-13-acetate) 誘導K562細胞往巨核細胞分化的過程中,水解磷酸脂受器2 (LPA2) 和3 (LPA3) 的表現量會受到調控。我們進一步分析巨核細胞特定表現的膜蛋白CD61,以及核內有絲分裂 (endomitosis) 現象,發現藥劑活化LPA2會抑制TPA誘導之巨核細胞分化。反之,利用基因knockdown的方式降低LPA2的表現可以促進巨核細胞的分化。利用免疫染色,我們進一步發現β-catenin是LPA2下游的調控分子,透過進入細胞核內活化GATA-1以及FLI-1轉錄因子,負向調控巨核細胞之分化。另一方面,我們將細胞以LPA1/3的拮抗劑處理抑制了巨核細胞分化,而藥劑活化LPA3則促進巨核細胞分化。利用基因knockdown方式降低LPA3的表現也使巨核細胞之分化受到抑制。我們更證明LPA3是透過產生reactive oxygen species (ROS),影響FLI-1轉錄因子的表現,因而正向調控巨核細胞分化。這些結果顯示,LPA2 與LPA3在K562的系統內,可能存在彼此拮抗的關係,並扮演著分子開關的角色反向調控巨核細胞之分化。zh_TW
dc.description.abstractErythrocytes and megakaryocytes (MK) are derived from a common progenitor that undergoes lineage specification. Lysophosphatidic acid (LPA), a lipid growth factor abundant in serum, was shown to be a regulator for erythropoietic process through activating LPA receptor 3 (LPA3). However, whether LPA affects megakaryopoiesis remains unclear. In this study, we used K562 leukemia cell line as a model to investigate the roles of LPA in MK differentiation. We demonstrated that K562 cells express both LPA receptor 2 (LPA2) and LPA3, and the expression levels of LPA2 are higher than LPA3. Treatment with phorbol 12-myristate 13-acetate (TPA), a commonly used megakaryopoiesis inducer, reversely regulates the expressions of LPA2 and LPA3. By pharmacological blockers and knockdown experiments, we revealed that LPA2 suppressed while LPA3 promotes MK differentiation in K562. The LPA2-mediated inhibition is dependent on β-catenin translocation, whereas reactive oxygen species (ROS) generation is a downstream signal for activation of LPA3. Furthermore, hematopoietic transcriptional factors (TFs), including GATA-1 and FLI-1, may involve in these regulatory mechanisms. Taken together, our results suggested that LPA2 and LPA3 may function as a molecular switch and play antagonistic roles during megakaryopoiesis of K562 cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:25:27Z (GMT). No. of bitstreams: 1
ntu-103-R01b41006-1.pdf: 2633267 bytes, checksum: e2fe2d0d46ad9dba0f8b99a559b2941f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
論文口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Introduction 1
Megakaryopoiesis and erythropoiesis 1
Transcription factors (TF) and MEP lineage commitment 2
K562 myeloid leukemia cell line 3
Lysophosphatidic acid (LPA) 3
Wnt/β-catenin pathway 4
Reactive oxygen species (ROS) 5
Rationale 7
Materials and methods 7
Cell culture and pharmacological treatment 8
LPA3 siRNA transfection 9
Lentivirus packaging and LPA2 shRNA transfection 9
RNA extraction and quantitative real-time PCR reaction 10
Flow cytometry 10
Immunofluorescence staining 11
Statistical analysis 11
Results 13
Induction of MK surface marker CD61 and endomitosis of K562 cells by TPA 13
Expression patterns of LPA receptors during TPA-induced megakaryopoiesis 13
Activation of LPA2 suppresses megakaryopoiesis 14
LPA3 signaling enhances megakaryopoiesis 16
Knockdown of LPA2 and LPA3 inversely regulate MK differentiation 17
Exogenous LPA does not affect MK differentiation 18
β-catenin translocation is involved in LPA2-mediated MK differentiation 19
ROS generation is involved in LPA3-mediated MK differentiation 20
Discussion 23
Reference 27
Tables & Figures 46
Table 1 Chemicals 46
Table 2 Real-time PCR primers (human) 47
Fig. 1 Induction of megakaryopoiesis by TPA 48
Fig. 2 mRNA expression of LPA receptors 49
Fig. 3 Pharmacological activation of LPA2 suppresses megakaryopoiesis 52
Fig. 4 Pharmacological blockade of LPA1/3 inhibits MK differentiation 54
Fig. 5 Pharmacological activation of LPA3 enhances megakaryopoiesis 56
Fig. 6 Knockdown of LPA2 and LPA3 have opposite effects on MK differentiation 59
Fig. 7 Exogenous LPA has no effect on MK differentiation 61
Fig. 8 The involvement of β-catenin in LPA2-mediated MK differentiation 65
Fig. 9 The involvement of ROS in LPA3-mediated MK differentiation 67
Fig. 10 Working model 68
dc.language.isozh-TW
dc.title水解磷酸脂受器於K562血癌細胞株調控巨核細胞分化之研究zh_TW
dc.titleLPA receptor 2 and 3 reversely regulate megakaryopoiesis of K562 human erythroleukemia cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陸振翮(Jenher Lu),陳俊宏(Jiun-Hong Chen),姚少凌(Chao-Ling Yao)
dc.subject.keywordK562血癌細胞株,巨核細胞,水解磷酸脂,水解磷酸脂受器,核內有絲分裂,zh_TW
dc.subject.keywordK562,megakaryocyte (MK),megakaryopoiesis,CD61,lysophosphatidic acid (LPA),LPA receptor,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2014-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-terms2030-01-01
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
2.57 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved