Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18778
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敏聰(Minn-Tsong Lin)
dc.contributor.authorYung-Che Sunen
dc.contributor.author孫永哲zh_TW
dc.date.accessioned2021-06-08T01:25:24Z-
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-08-01
dc.identifier.citation[1] P. K. Hansma and J. Terso , J. Appl. Phys. 61, R1 (1987).
[2] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
[3] L.M. Eng, and H. Fuchs, Materials Science and Engineering A, 139, 230 (1991).
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
[5] https://www.research.a-star.edu.sg/research/6695
[6] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321, 385 (2008).
[7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 320, 1308 (2008).
[8] A. K. Geim, Science 324, 1530 (2009).
[9] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Communications 146, 351 (2008).
[10] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[11] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotech. 7, 699 (2012).
[12] Th. B oker, R. Severin, A. M uller, C. Janowitz, R. Manzke, D. Vo , P. Kr uger, A. Mazur, and J. Pollmann, Phys. Rev. B, 64, 235305 (2001).
[13] M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).
[14] M. Chhowalla1, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
[15] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Phys. Rev. B, 87, 165409 (2013).
[16] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mat. 12, 207 (2013).
[17] Y. Yu, S. Y. Huang, Y. Li, S. N. Steinmann, W. Yang, and L. Cao, Nano Lett. 14, 553 (2014).
[18] J. Lee, Z.Wang, K. He, J. Shan, and P. X.-L. Feng, ACS Nano, 7, 6086 (2013).
[19] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
[20] K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, Nat. Nanotech. 24, 465705 (2013).
[21] A. Pospischil, M. M. Furchi and T. Mueller, Nat. Nanotech. 9, 257 (2014).
[22] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
[23] V. Podzorov, M. E. Gershenson, Ch. Kloc, R. Zeis, and E. Bucher, Appl. Phys. Lett. 84, 3301 (2004).
[24] H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Marting, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudianc, and A. Javeya, PNAS, 111, 6198 (2014).
[25] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang , C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mat. 24, 2320 (2012).
[26] X. L. Li, Y. D. Li, Chem. Eur. J, 9, 2726-2731 (2003).
[27] J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu and L. J. Li, ACS Nano, 8, 923 (2014).
[28] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).
[29] C. Julian Chen, Introduction to Scanning Tunneling Microscopy. (1993).
[30] J. Terso and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).
[31] J. Terso and D. R. Hamann, Phys. Rev. B, 31, 805 (1985).
[32] http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
[33] http://www.cs.unm.edu/ brayer/vision/fourier.html
[34] F. Grey and J. Bohr, Europhys. Lett. 18, 717 (1992).
[35] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotech. 6, 147 (2011).
[36] S. Helveg, J.V. Lauritsen, E. L gsgaard, I. Stensgaard, J. K. N rskov, B. S. Clausen, H. Tops e, and F. Besenbacher, Phys. Rev. Lett. 84, 951 (2000).
[37] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Phys. Rev. B, 71, 193406 (2005).
[38] Y. You, Z. Ni, T. Yu, and Z. Shen, Appl. Phys. Lett. 93, 163112 (2008).
[39] http://www.mrsec.umn.edu/Research/Seed2010 Koester.php
[40] http://nanoprobes.aist-nt.com/apps/HOPG%20info.htm
[41] R. C. Tatar and S. Rabii, Phys. Rev. B 25, 4126 (1982).
[42] J. A. Wilson and A. D. Yo e, Adv. Phys. 18, 193 (1969).
[43] H. Terrones, F. L opez-Ur as and M. Terrones, Sci. Rep. 3, 1549 (2013).
[44] J. Kibsgaard, J. V. Lauritsen, E. L gsgaard, B. S. Clausen, H. Tops e, and F. Besenbacher, J. Am. Chem. SOC. 128, 13950 (2006).
[45] K. H. Lee, M. Causa, and S. S. Park, J. Phys. Chem. B, 102, 6020 (1998).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18778-
dc.description.abstract二硫化鉬和二硒化鎢是擁有半導體特性的典型層狀過渡金屬硫屬化合物。我們利用低溫掃描穿隧式顯微鏡研究以化學氣相沉積長在高定向熱解石墨上二硫化鉬的表面型態。從原子力顯微鏡影像可知,二硫化鉬趨向形成大面積的三角形島狀結構,並且表現出與高定向熱解石墨台階邊緣相稱的特定生成方向。分析原子尺度的掃描穿隧式顯微鏡影像後,硫原子與莫列條紋的單位晶胞向量可被決定。經由六方晶格陣列重疊的對稱分析,我們可以得知二硫化鉬與高定向熱解石墨之間的旋轉角很小,也就是說二硫化鉬與石墨的晶格幾乎平行。結合晶格定向模型分析,在原子力顯微鏡影像中觀察到的三角形島狀結構的特定生成方向可以被解釋。此外,我們量測到莫列條紋尺度的單層二硫化鉬在高定向熱解石墨上的掃描穿隧能譜。在此情況下,莫列條紋主要來自電子態的起伏。原子莫列條紋模型顯示硫和碳原子的排列情況造成電子態在空間上的起伏。另外,我們量測到一個侷限在莫列條紋局部極大區域的電子態,而此電子態來自硫原子和碳原子軌域的交互作用。zh_TW
dc.description.abstractMolybdenum disul de (MoS2) and tungsten diselenide (WSe2) are typical layered transition-metal dichalcogenide 2D materials with semiconductor properties. In this work, we investigate the topography of the chemical vapor deposition (CVD) grown MoS2 on HOPG by low temperature STM. In atomic force microscopy (AFM) data, MoS2 islands tend to form large domain triangular islands and show some preferred growing direction compared to the HOPG edge. From scanning tunneling microscopy (STM) atom-resolved image, the unit cell vector of the sulfur atoms and the superstructure moir e pattern can be determined. Through the symmetry analysis of the hexagonal array overlapping, we can figure out the angle of orientation di fference is small through the MoS2 domains we found, which means that MoS2 and HOPG lattice are almost parallel. Combining the edge orientation model analysis, the preferred direction of the triangular islands observed in AFM topography can be explained. Additionally, we obtain highly resolved scanning tunneling spectroscopy (STS) of monolayer MoS2 on HOPG in moir e-pattern resolution. The moir e pattern is mainly related to the corrugation of electronic states under this situation. A atom model of moir e pattern is made to reveal that the atomic arrangement between sulfur and carbon atoms causes the corrugation of electronic states. Moreover, we observe the state localized in the local maximum of moir e pattern, which may be originated from the orbital interaction between sulfur and carbon atoms.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:25:24Z (GMT). No. of bitstreams: 1
ntu-103-R01245015-1.pdf: 11254655 bytes, checksum: c14c6af958cbe8178ade08be69809f69 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1 Introduction (1)
2 Experimental Techniques (8)
2.1 Experiment Preparation (8)
2.1.1 Ultra-high Vacuum System (8)
2.1.2 Fabrication of Scanning Tunneling Microscopy Tip (11)
2.1.3 Sample Preparation (12)
2.2 Scanning Tunneling Microscopy (13)
2.2.1 Tunneling Effect (14)
2.2.2 Scanning Tunneling Microscopy Process (16)
2.2.3 Scanning Tunneling Spectroscopy (16)
2.3 Data Analytical Process (18)
2.3.1 Fourier Transform Measurement (18)
2.3.2 Calibration of Scanning Tunneling Microscopy Image (20)
2.3.3 Moire Pattern Analysis (22)
3 Morphology And Moire Pattern Analysis of Monolayer MoS2 on
HOPG (23)
3.1 Atomic Force Microscopy Morphology (23)
3.2 Scanning Tunneling Microscopy Morphology And Moire Pattern Analysis (25)
3.3 Scanning Tunneling Microscopy Morphology of HOPG Edges (28)
4 Atom-resolved Morphology and Moire-pattern-resolved Scanning Tunneling Spectroscopy of Monolayer MoS2 on HOPG (30)
4.1 Scanning Tunneling Microscopy Morphology of Monolayer MoS2 (30)
4.2 Atom-resolved Morphology And Fourier Transform Analysis (31)
4.3 Investigation of Two MoS2 Territories across The Domain Wall (33)
4.4 Moire-pattern Resolved Scanning Tunneling Spectroscopy (36)
5 Discussion (41)
5.1 Probing Accuracy of Fourier Transform Scanning Tunneling Microscopy (41)
5.2 MoS2 Flakes on HOPG Step Edges (43)
5.3 Moire-pattern Resolved Scanning Tunneling Spectroscopy of Monolayer MoS2 on HOPG (45)
6 Conclusion (48)
Bibliography (50)
dc.language.isoen
dc.title氣相沉積生成在高定向熱解石墨上的二硫化鉬之掃描穿隧顯微鏡表面型態與莫列條紋尺度掃描穿隧能譜之研究zh_TW
dc.titleSTM Morphology and Moire-pattern-resolved STS of CVD Grown MoS2 on HOPGen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏金明(Ching-Ming Wei),李連忠(Lain-Jong Li)
dc.subject.keyword二硫化鉬,過渡金屬硫屬化合物,化學氣相沉積,掃描穿隧式顯微鏡,莫列條紋,掃描穿隧能譜,zh_TW
dc.subject.keywordmolybdenum disulde,transition-metal dichalcogenide,chemical vapor deposition,scanning tunneling microscopy,moire pattern,scanning tunneling spectroscopy,en
dc.relation.page53
dc.rights.note未授權
dc.date.accepted2014-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
10.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved