請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18775完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李心予(Hsinyu Lee) | |
| dc.contributor.author | Ming-Ching Hsu | en |
| dc.contributor.author | 徐銘璟 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:25:11Z | - |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-01 | |
| dc.identifier.citation | [1] S. Safe, Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans, Annual review of pharmacology and toxicology 26 (1986) 371-399.
[2] S. Safe, S. Bandiera, T. Sawyer, L. Robertson, L. Safe, A. Parkinson, P.E. Thomas, D.E. Ryan, L.M. Reik, W. Levin, PCBs: structure–function relationships and mechanism of action, Environmental health perspectives 60 (1985) 47. [3] M. Van den Berg, L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. Walker, R.E. Peterson, The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds, Toxicol Sci 93 (2006) 223-241. [4] J. Tuomisto, Synopsis on dioxins and PCBs, Report/National Institute for Health and Welfare (THL)= Raportti/Terveyden ja hyvinvoinnin laitos: 14/2011 (2011). [5] R. Gotz, R. Lauer, Analysis of sources of dioxin contamination in sediments and soils using multivariate statistical methods and neural networks, Environmental science & technology 37 (2003) 5559-5565. [6] H. Fiedler, Sources of PCDD/PCDF and impact on the environment, Chemosphere 32 (1996) 55-64. [7] H. Fiedler, O. Hutzinger, C. Timms, Dioxins: sources of environmental load and human exposure, Toxicological & Environmental Chemistry 29 (1990) 157-234. [8] V.M. Thomas, T.G. Spiro, Peer reviewed: the us Dioxin inventory: are there missing sources?, Environmental science & technology 30 (1996) 82A-85A. [9] M. Kogevinas, Human health effects of dioxins: cancer, reproductive and endocrine system effects, Apmis 109 (2001) S223-S232. [10] S. Watanabe, K. Kitamura, M. Nagahashi, Effects of dioxins on human health: a review, Journal of epidemiology/Japan Epidemiological Association 9 (1999) 1-13. [11] A. Poland, J.C. Knutson, 2, 3, 7, 8-Tetrachlorodibenzo-thorn-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity, Annual review of pharmacology and toxicology 22 (1982) 517-554. [12] N. Harrison, S. Wearne, M.d.M. Gem, A. Gleadle, J. Starting, S. Thorpe, C. Wright, M. Kelly, C. Robinson, S. White, Time trends in human dietary exposure to PCDDS, PCDDS and PCBS in the UK, Chemosphere 37 (1998) 1657-1670. [13] A. Schecter, P. Cramer, K. Boggess, J. Stanley, J. Olson, H. Kessler, Dioxin intake from US food: results from a new nationwide food survey, Organohalogen Compounds 28 (1996) 320-324. [14] P.A. Bertazzi, I. Bernucci, G. Brambilla, D. Consonni, A.C. Pesatori, The Seveso studies on early and long-term effects of dioxin exposure: a review, Environmental Health Perspectives 106 (1998) 625. [15] P.A. Bertazzi, C. Zocchetti, S. Guercilena, D. Consonni, A. Tironi, M.T. Landi, A.C. Pesatori, Dioxin exposure and cancer risk: A 15-year mortality study after the' Seveso accident', Epidemiology 8 (1997) 646-652. [16] P.A. Bertazzi, C. Zocchetti, A.C. Pesatori, S. Guercilena, M. Sanarico, L. Radice, Ten-year mortality study of the population involved in the Seveso incident in 1976, American journal of epidemiology 129 (1989) 1187-1200. [17] J. Nagayama, Effects of lactational exposure to chlorinated dioxins and related chemicals on lymphocyte subpopulations and thyroid functions in Japanese babies, Dioxin'96 30 (1996) 228-233. [18] R. Neubert, G. Golor, R. Stahlmann, H. Helge, D. Neubert, Polyhalogenated dibenzo-p-dioxins and dibenzofurans and the immune system. 4. Effects of multiple-dose treatment with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on peripheral lymphocyte subpopulations of a non-human primate (Callithrix jacchus), Archives of toxicology 66 (1992) 250-259. [19] R. Neubert, U. Jacob-Muller, R. Stahlmann, H. Helge, D. Neubert, Polyhalogenated dibenzo-p-dioxins and dibenzofurans and the immune system. 1. Effects on peripheral lymphocyte subpopulations of a non-human primate (Callithrix jacchus) after treatment with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), Archives of toxicology 64 (1990) 345-359. [20] G.D. Lathrop, S.G. Machado, T.G. Karrison, W.D. Grubbs, W.F. Thomas, Air Force Health Study. An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. First Followup Examination Results. Volume 1, DTIC Document, 1987. [21] J. Vena, P. Boffetta, H. Becher, T. Benn, H.B. Bueno-de-Mesquita, D. Coggon, D. Colin, D. Flesch-Janys, L. Green, T. Kauppinen, Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers, Environmental health perspectives 106 (1998) 645. [22] M. Milbrath, Y. Wenger, C.-W. Chang, C. Emond, D. Garabrant, B.W. Gillespie, O. Jolliet, Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding, Environ Health Perspect 117 (2009) 417-425. [23] C.C. Travis, H.A. Hattemer-Frey, Human exposure to dioxin, Science of the total environment 104 (1991) 97-127. [24] K.M. Burbach, A. Poland, C.A. Bradfield, Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor, Proceedings of the National Academy of Sciences 89 (1992) 8185-8189. [25] J.V. Schmidt, C.A. Bradfield, Ah receptor signaling pathways, Annual review of cell and developmental biology 12 (1996) 55-89. [26] Y.-Z. Gu, J.B. Hogenesch, C.A. Bradfield, The PAS superfamily: sensors of environmental and developmental signals, Annual review of pharmacology and toxicology 40 (2000) 519-561. [27] O. Hankinson, The aryl hydrocarbon receptor complex, Annual review of pharmacology and toxicology 35 (1995) 307-340. [28] G.H. Perdew, Chemical cross-linking of the cytosolic and nuclear forms of the Ah receptor in hepatoma cell line 1c1c7, Biochemical and biophysical research communications 182 (1992) 55-62. [29] L. Zhang, U. Savas, D.L. Alexander, C.R. Jefcoate, Characterization of the mouse CYP1B1 gene Identification of an enhancer region that directs aryl hydrocarbon receptor-mediated constitutive and induced expression, Journal of Biological Chemistry 273 (1998) 5174-5183. [30] Z.-Y. Zhang, R.D. Pelletier, Y.N. Wong, M. Sugawara, N. Zhao, B.A. Littlefield, Preferential inducibility of CYP1A1 and CYP1A2 by TCDD: differential regulation in primary human hepatocytes versus transformed human cells, Biochemical and biophysical research communications 341 (2006) 399-407. [31] I. Pongratz, G. Mason, L. Poellinger, Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity, Journal of Biological Chemistry 267 (1992) 13728-13734. [32] M.L. Whitelaw, M. Gottlicher, J. Gustafsson, L. Poellinger, Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor, The EMBO journal 12 (1993) 4169. [33] A. Wilhelmsson, S. Cuthill, M. Denis, A.C. Wikstrom, J. Gustafsson, L. Poellinger, The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein, The EMBO journal 9 (1990) 69. [34] E.J. Reiner, R.E. Clement, A.B. Okey, C.H. Marvin, Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs, Analytical and bioanalytical chemistry 386 (2006) 791-806. [35] M. Alaee, D. Sergeant, M. Ikonomou, J. Luross, A gas chromatography/high-resolution mass spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish, Chemosphere 44 (2001) 1489-1495. [36] E. Buan, C. Lo, W. Zhang, J. Li, Correction of discrepancies in dioxin quantification between immunoassay and gas chromatography–high-resolution mass spectrometry, Analytical and bioanalytical chemistry 398 (2010) 2233-2241. [37] P.A. Behnisch, K. Hosoe, S.-i. Sakai, Bioanalytical screening methods for dioxins and dioxin-like compounds—a review of bioassay/biomarker technology, Environment International 27 (2001) 413-439. [38] R. Hoogenboom, The combined use of the CALUX bioassay and the HRGC/HRMS method for the detection of novel dioxin sources and new dioxin-like compounds, Environmental Science and Pollution Research 9 (2002) 304-306. [39] L. Stanker, B. Watkins, M. Vanderlaan, W.L. Budde, Development of an immunoassay for chlorinated dioxins based on a monoclonal antibody and an enzyme linked immunosorbent assay (ELISA), Chemosphere 16 (1987) 1635-1639. [40] Y. Sugawara, S.J. Gee, J.R. Sanborn, S.D. Gilman, B.D. Hammock, Development of a highly sensitive enzyme-linked immunosorbent assay based on polyclonal antibodies for the detection of polychlorinated dibenzo-p-dioxins, Analytical chemistry 70 (1998) 1092-1099. [41] T. Tsutsumi, Y. Amakura, A. Okuyama, Y. Tanioka, K. Sakata, K. Sasaki, T. Maitani, Application of an ELISA for PCB 118 to the screening of dioxin-like PCBs in retail fish, Chemosphere 65 (2006) 467-473. [42] A. Poland, E. Glover, A. Kende, Stereospecific, high affinity binding of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase, Journal of Biological Chemistry 251 (1976) 4936-4946. [43] T. Sawyer, S. Safe, PCB isomers and congeners: Induction of aryl hydrocarbon hydroxylase and ethoxyresorufin< i> O</i>-deethylase enzyme activities in rat hepatoma cells, Toxicology letters 13 (1982) 87-93. [44] J.J. Whyte, R. Jung, C. Schmitt, D. Tillitt, Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure, CRC Critical Reviews in Toxicology 30 (2000) 347-570. [45] A. Murk, J. Legler, M. Denison, J. Giesy, C. Van de Guchte, A. Brouwer, Chemical-Activated Luciferase Gene Expression (CALUX): A Novel< i> in Vitro</i> Bioassay for Ah Receptor Active Compounds in Sediments and Pore Water, Fundamental and applied toxicology 33 (1996) 149-160. [46] A.J. Murk, P.E. Leonards, A.S. Bulder, A.S. Jonas, M.J. Rozemeijer, M.S. Denison, J.H. Koeman, A. Brouwer, The calux (chemical‐activated luciferase expression) assay adapted and validated for measuring TCDD equivalents in blood plasma, Environmental toxicology and chemistry 16 (1997) 1583-1589. [47] L. Hoogenboom, W. Traag, T. Bovee, L. Goeyens, S. Carbonnelle, J. Van Loco, H. Beernaert, G. Jacobs, G. Schoeters, L. Goeyens, The CALUX bioassay: Current status of its application to screening food and feed, TrAC Trends in Analytical Chemistry 25 (2006) 410-420. [48] K. Van Langenhove, K. Croes, M.S. Denison, M. Elskens, W. Baeyens, The CALUX bio-assay: analytical comparison between mouse hepatoma cell lines with a low (H1L6. 1c3) and high (H1L7. 5c1) number of dioxin response elements, Talanta 85 (2011) 2039-2046. [49] C.-I. Lin, C.-H. Hsieh, S.S.-Y. Lee, W.-S. Lee, G.-P. Chang-Chien, C.-Y. Pan, H. Lee, Establishment of a fluorescence resonance energy transfer-based bioassay for detecting dioxin-like compounds, Journal of biomedical science 15 (2008) 833-840. [50] B.J. Wang, Y.F. Liao, Y.T. Tung, L.H. Yih, C.C. Hu, H. Lee, Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds, Toxicol Mech Methods 23 (2013) 247-254. [51] B.J. Wang, P.Y. Wu, Y.C. Lu, C.H. Chang, Y.C. Lin, T.C. Tsai, M.C. Hsu, H. Lee, Establishment of a cell-free bioassay for detecting dioxin-like compounds, Toxicol Mech Methods 23 (2013) 464-470. [52] M.P. Hall, J. Unch, B.F. Binkowski, M.P. Valley, B.L. Butler, M.G. Wood, P. Otto, K. Zimmerman, G. Vidugiris, T. Machleidt, Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, ACS chemical biology 7 (2012) 1848-1857. [53] Z.-Y. Guo, Using the newly developed nanoluciferase as an ultrasensitive bioluminescent probe for ligand-receptor interaction studies, Receptors & Clinical Investigation 1 (2014) doi: 10.14800/rci. 14116. [54] T. Ikuta, K. Kawajiri, Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor, Experimental cell research 312 (2006) 3585-3594. [55] R.D. Patel, D.J. Kim, J.M. Peters, G.H. Perdew, The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin, Toxicological Sciences 89 (2006) 75-82. [56] B.C. DiNatale, I.A. Murray, J.C. Schroeder, C.A. Flaveny, T.S. Lahoti, E.M. Laurenzana, C.J. Omiecinski, G.H. Perdew, Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling, Toxicological Sciences 115 (2010) 89-97. [57] C.A. Opitz, U.M. Litzenburger, F. Sahm, M. Ott, I. Tritschler, S. Trump, T. Schumacher, L. Jestaedt, D. Schrenk, M. Weller, An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor, Nature 478 (2011) 197-203. [58] R. Tanos, R.D. Patel, I.A. Murray, P.B. Smith, A.D. Patterson, G.H. Perdew, Aryl hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin response element‐independent manner, Hepatology 55 (2012) 1994-2004. [59] W. Tian, H.Q. Xie, H. Fu, X. Pei, B. Zhao, Immunoanalysis Methods for the Detection of Dioxins and Related Chemicals, Sensors 12 (2012) 16710-16731. [60] P.A. Behnisch, K. Hosoe, A. Brouwer, S.-i. Sakai, Screening of dioxin-like toxicity equivalents for various matrices with wildtype and recombinant rat hepatoma H4IIE cells, Toxicological sciences 69 (2002) 125-130. [61] F. Wiebel, M. Wegenke, F. Kiefer, Bioassay for determining 2, 3, 7, 8-tetrachlorodibenzo-< i> p</i>-dioxin equivalents (TEs) in human hepatoma HepG2 cells, Toxicology letters 88 (1996) 335-338. [62] G. He, T. Tsutsumi, B. Zhao, D.S. Baston, J. Zhao, S. Heath-Pagliuso, M.S. Denison, Third generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin responsive elements dramatically increases Calux Bioassay sensitivity and responsiveness, Toxicological Sciences (2011) kfr189. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18775 | - |
| dc.description.abstract | 戴奧辛與類戴奧辛化合物是由一群含有兩個氧原子連接一對苯環所構成之衍生化合物的統稱,包括多種氯二聯苯戴奧辛、多氯二聯苯呋喃以及共平面多氯聯苯戴奧辛,這群化合物被認為是已知對人類與動物毒性最強的有機化學物質,一般經由燃燒含有氯的廢棄物產生。其具有高度脂溶性,會經由食物鏈等途徑進入生物體內,然因無法分解而會並持續累積在體內,進而影響生育功能、干擾正常內分泌甚至造成致癌。
目前戴奧辛的檢測多使用氣相層析-高解析度質譜儀 (GC/HRMS) 分析成分與定量,然而其儀器與時間成本使大規模的檢測受到限制。隨著戴奧辛在生物體內致毒機制的研究發展,利用生物檢測方法創造便宜、快速的新檢測技術已成為趨勢。在本論文中,我們建立了能大量表現 AhR 和 NanoLuc luciferase 融合蛋白 (AhR-NL) 的AN細胞株,以及能夠大量表現 AhR-NL 和以組胺酸標定之ARNT (ARNT-His) 的ANA 細胞株,並應用此兩株細胞株建立了兩種具有高靈敏度且快速的活體外戴奧辛生物檢驗方法:第一、由於戴奧辛會促進 AhR-NL 的降解,因此可以使用 AN 細胞裂解液冷光訊號的降低程度來偵測戴奧辛的濃度,其反應時間在一小時以內,並且具有能夠長期冷凍保存的潛力。第二、使用帶有抗組氨酸抗體的瓊脂膠體珠 (agarose beads) 或磁珠 (magnetic beads) 抓取 ANA 細胞裂解液中的ARNT-His,形成 ARNT-beads 複合體。戴奧辛會促進 AN裂解液中的 AhR-NL 與 ARNT-beads 複合體結合,進而使冷光訊號上升,依此來偵測戴奧辛濃度,其所有反應時間也可在一小時內完成。 相較於其他的戴奧辛生物檢測方式,我們在本論文中建立了一套能在活體外進行,且反應時間快速的戴奧辛生物檢測方法,未來可應用於大規模的檢測食物與環境污染物,為人類的健康作出貢獻。 | zh_TW |
| dc.description.abstract | Dioxin and dioxin-like compounds comprise a group of chemicals that contain a double benzene ring-like structure, and are commonly regarded as the most toxic chemical compounds to human and animals. Burning wastes containing chloride commonly produces these compounds. Due to the high hydrophobic quality, accumulation of dioxin in human tissues poses a potential threat to human health.
Currently, analytical chemical methods still dominate dioxin detection procedures. However, with gradually increasing knowledge of the dioxin-mediated signal transduction mechanisms, using bioassays to create economic and efficient dioxin detection protocols has become a trend. In this study, we generated AN cell line, which can overexpress AhR-NanoLuc luciferase fusion protein (AhR-NL), and ANA cell line, which can overexpress AhR-NL and histidine-tagged ARNT (ARNT-His), to develop two types of cell-free dioxin bioassays. We found that dioxin induces degradation of AhR-NL, so we can detect a concentration of dioxin by luminescence reduction of AN lysate. The reaction time is within 1 hour, and the cell lysate can still function several months after -80℃ conservation. Additionally, we used anti-His agarose beads or magnetic beads to bind ARNT-His in ANA lysate, forming ARNT-beads complexes. Upon AN lysate reacts with the ARNT-beads complex, dioxin induces the ARNT-beads complex to pull down AhR-NL, which increases luminescence for dioxin detection. The total reaction time is also within 1 hour. Compared to other dioxin bioassays, the cell-free dioxin detection methods we developed in this study are both faster and more sensitive. In the future, we may apply these techniques to detect food and environmental contaminants, which may contribute for human health. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:25:11Z (GMT). No. of bitstreams: 1 ntu-103-R01B41001-1.pdf: 2607856 bytes, checksum: 2f6ea116840e56e1adda1b99900c8b58 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Table of contents
致謝 i 中文摘要 ii Abstract iv 1 Introduction 1 1.1 Dioxins and dioxin-like compounds 1 1.2 Sources of dioxins and dioxin-like compounds 1 1.3 Toxicity of dioxin and dioxin-like compounds 2 1.4 Aryl hydrocarbon receptor signaling pathway 3 1.5 Detection methods of dioxin and dioxin-like compounds 4 1.6 Nanoluciferase 7 2 Materials and methods 8 2.1 Generation of stable transfected cell lines 8 2.2 Cell culture 8 2.3 Western blot 9 2.4 Preparation of cell-free extracts for dioxin detection 9 2.5 Detection of dioxin by AN cell lysate luminescence 10 2.6 Cell lysate conservation 10 2.7 Immunoprecipitation dioxin bioassay with agarose beads 11 2.8 Immunoprecipitation dioxin bioassay with magnetic beads 12 2.9 Chemical preparation 12 2.10 Statistical analysis 13 3 Results 14 3.1 Establishment of AN and ANA stable cell lines 14 3.2 AN cell lysate dioxin detection system 14 3.3 AhR-NL degradation in AN cell lysate 15 3.4 Dioxin detection by AN lysate 16 3.5 Preservation of AN lysate 17 3.6 Dioxin detection by AhR-NL immunoprecipitation 17 4 Discussion 19 5 Reference 22 6 Figures 30 7 Tables 54 8 Supplementary figures 55 | |
| dc.language.iso | en | |
| dc.title | 利用細胞萃取物建立戴奧辛檢測系統之研究 | zh_TW |
| dc.title | Establishment of a cell-free bioassay for dioxin-like compounds detection with cell lysate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊宏(Jiun-Hong Chen),潘建源(Chien-Yuen Pan),黃偉邦(Wei-Pang Huang) | |
| dc.subject.keyword | 戴奧辛,AhR,ARNT,生物檢測,NanoLuc Luciferase, | zh_TW |
| dc.subject.keyword | dioxin,AhR,ARNT,bioassay,NanoLuc luciferase, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
