請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18774完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁 | |
| dc.contributor.author | Meng-Yu Tsai | en |
| dc.contributor.author | 蔡孟諭 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:25:08Z | - |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-08-01 | |
| dc.identifier.citation | [1] N. J. Agard, J. A. Prescher, C. R. Bertozzi, Journal of the American Chemical Society 2004, 126, 15046.
[2] R. J. Pounder, M. J. Stanford, P. Brooks, S. P. Richards, A. P. Dove, Chemical Communications 2008, 0, 5158. [3] Y. Xia, X.-M. Zhao, G. M. Whitesides, Microelectronic Engineering 1996, 32, 255. [4] M. Mosbach, H. Zimmermann, T. Laurell, J. Nilsson, E. Csoregi, W. Schuhmann, Biosensors and Bioelectronics 2001, 16, 827. [5] M. Mrksich, G. B. Sigal, G. M. Whitesides, Langmuir 1995, 11, 4383. [6] B. C. Giordano, E. R. Copeland, J. P. Landers, ELECTROPHORESIS 2001, 22, 334; C. M. Halliwell, A. E. G. Cass, Analytical Chemistry 2001, 73, 2476. [7] C. J. Hawker, A. W. Bosman, E. Harth, Chemical Reviews 2001, 101, 3661. [8] H. Ma, M. Wells, T. P. Beebe, A. Chilkoti, Advanced Functional Materials 2006, 16, 640; Hu, K. G. Neoh, L. Cen, E.-T. Kang, Biomacromolecules 2006, 7, 809. [9] I. Lokuge, X. Wang, P. W. Bohn, Langmuir 2006, 23, 305. [10] A. Favier, M.-T. Charreyre, Macromolecular Rapid Communications 2006, 27, 653. [11] M. K. Brinks, A. Studer, Macromolecular Rapid Communications 2009, 30, 1043. [12] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987. [13] F. Shi, Z. Wang, N. Zhao, X. Zhang, Langmuir 2004, 21, 1599; L. Zhai, A. J. Nolte, R. E. Cohen, M. F. Rubner, Macromolecules 2004, 37, 6113. [14] J. F. Quinn, F. Caruso, Langmuir 2003, 20, 20. [15] Y. Zhang, S. Yang, Y. Guan, W. Cao, J. Xu, Macromolecules 2003, 36, 4238. [16] P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang, Materials Science and Engineering: R: Reports 2002, 36, 143; W. Zhang, P. K. Chu, J. Ji, Y. Zhang, X. Liu, R. K. Y. Fu, P. C. T. Ha, Q. Yan, Biomaterials 2006, 27, 44; M. T. Khorasani, H. Mirzadeh, S. Irani, Radiation Physics and Chemistry 2008, 77, 280. [17] P. Sioshansi, E. J. Tobin, Surface and Coatings Technology 1996, 83, 175. [18] N. Sprang, D. Theirich, J. Engemann, Surface and Coatings Technology 1995, 74–75, Part 2, 689. [19] H. Hiruma, H. Toida, T. Hanawa, H. Sakuragi, Y. Suzuki, Surface and Coatings Technology 2011, 206, 905. [20] M. Manso-Silvan, A. Valsesia, D. Gilliland, G. Ceccone, F. Rossi, Surface and Interface Analysis 2004, 36, 733. [21] H.-Y. Chen, J. Lahann, Langmuir 2010, 27, 34. [22] W. E. Tenhaeff, K. K. Gleason, Advanced Functional Materials 2008, 18, 979. [23] J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, R. Langer, Angewandte Chemie International Edition 2001, 40, 3166. [24] H.-Y. Chen, J. Lahann, Analytical Chemistry 2005, 77, 6909. [25] H. Nandivada, H.-Y. Chen, J. Lahann, Macromolecular Rapid Communications 2005, 26, 1794. [26] K. Y. Suh, R. Langer, J. Lahann, Advanced Materials 2004, 16, 1401. [27] X. Jiang, H.-Y. Chen, G. Galvan, M. Yoshida, J. Lahann, Advanced Functional Materials 2008, 18, 27. [28] Z. Qu, S. Muthukrishnan, M. K. Urlam, C. A. Haller, S. W. Jordan, V. A. Kumar, U. M. Marzec, Y. Elkasabi, J. Lahann, S. R. Hanson, E. L. Chaikof, Advanced Functional Materials 2011, 21, 4736. [29] Y. M. Elkasabi, J. Lahann, P. H. Krebsbach, Biomaterials 2011, 32, 1809. [30] J. Lahann, H. Hocker, R. Langer, Angewandte Chemie International Edition 2001, 40, 726. [31] J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F. Jensen, R. Langer, Langmuir 2002, 18, 3632. [32] X. Deng, T. W. Eyster, Y. Elkasabi, J. Lahann, Macromolecular Rapid Communications 2012, 33, 640. [33] Y. Elkasabi, J. Lahann, Macromolecular Rapid Communications 2009, 30, 57. [34] K. B. Wiberg, H. Maltz, M. Okano, Inorganic Chemistry 1968, 7, 830. [35] J. J. Roberts, G. P. Warwick, Biochemical Pharmacology 1961, 6, 205. [36] T. Posner, Ber. Dtsch. Chem. Ges. 1905, 38, 646. [37] K. Griesbaum, Angewandte Chemie International Edition in English 1970, 9, 273. [38] D. Li, B. Manjula, A. Acharya, The Protein Journal 2006, 25, 263. [39] W. Yuan, J. Yang, P. Kopečková, J. i. Kopeček, Journal of the American Chemical Society 2008, 130, 15760. [40] L. M. Y. Yu, K. Kazazian, M. S. Shoichet, Journal of Biomedical Materials Research Part A 2007, 82A, 243. [41] E. Oh, K. Susumu, J. B. Blanco-Canosa, I. L. Medintz, P. E. Dawson, H. Mattoussi, Small 2010, 6, 1273. [42] J. Huwyler, D. Wu, W. M. Pardridge, Proceedings of the National Academy of Sciences 1996, 93, 14164. [43] J. R. Jones, C. L. Liotta, D. M. Collard, D. A. Schiraldi, Macromolecules 1999, 32, 5786. [44] M. J. Roberts, M. D. Bentley, J. M. Harris, Advanced Drug Delivery Reviews 2002, 54, 459. [45] B. T. Houseman, E. S. Gawalt, M. Mrksich, Langmuir 2002, 19, 1522. [46] S.-J. Xiao, S. Brunner, M. Wieland, The Journal of Physical Chemistry B 2004, 108, 16508. [47] M. A. Gauthier, M. I. Gibson, H.-A. Klok, Angewandte Chemie International Edition 2009, 48, 48. [48] A. Rezania, R. Johnson, A. R. Lefkow, K. E. Healy, Langmuir 1999, 15, 6931. [49] X. Liu, P. K. Chu, C. Ding, Materials Science and Engineering: R: Reports 2004, 47, 49. [50] S. B. Rahane, R. M. Hensarling, B. J. Sparks, C. M. Stafford, D. L. Patton, Journal of Materials Chemistry 2012, 22, 932. [51] X. Deng, C. Friedmann, J. Lahann, Angewandte Chemie International Edition 2011, 50, 6522. [52] H. Nandivada, H.-Y. Chen, L. Bondarenko, J. Lahann, Angewandte Chemie International Edition 2006, 45, 3360. [53] A. J. Inglis, C. Barner-Kowollik, Macromolecular Rapid Communications 2010, 31, 1247. [54] W. F. Gorham, Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4, 3027; J. Lahann, R. Langer, Macromolecules 2002, 35, 4380. [55] Y. Xia, G. M. Whitesides, Annual Review of Materials Science 1998, 28, 153; A. Perl, D. N. Reinhoudt, J. Huskens, Advanced Materials 2009, 21, 2257. [56] N. W. Johnston, J. Bienenstock, Journal of Immunological Methods 1974, 4, 189. [57] N. Nath, J. Hyun, H. Ma, A. Chilkoti, Surface Science 2004, 570, 98; D. G. Castner, B. D. Ratner, Surface Science 2002, 500, 28. [58] P. Weber, D. Ohlendorf, J. Wendoloski, F. Salemme, Science 1989, 243, 85. [59] B. D. Plouffe, D. N. Njoka, J. Harris, J. Liao, N. K. Horick, M. Radisic, S. K. Murthy, Langmuir 2007, 23, 5050. [60] D. J. King, A. Turner, A. P. H. Farnsworth, J. R. Adair, R. J. Owens, R. B. Pedley, D. Baldock, K. A. Proudfoot, A. D. G. Lawson, N. R. A. Beeley, K. Millar, T. A. Millican, B. A. Boyce, P. Antoniw, A. Mountain, R. H. J. Begent, D. Shochat, G. T. Yarranton, Cancer Research 1994, 54, 6176; A. P. Chapman, Advanced Drug Delivery Reviews 2002, 54, 531. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18774 | - |
| dc.description.abstract | The first maleimide-functionalized poly-p-xylylene is synthesized via chemical vapor deposition (CVD) polymerization from 4-N-maleimidomethyl-[2,2]paracyclophane on various substrates. Coated substrates are readily available to perform thiol–maleimide click reaction under mild conditions. Designed surfaces are highlighted in low-protein-fouling modification as well as manipulated attachments and growth of bovine arterial endothelial cells. The availability of the maleimide functionality is further exploited in combination with alkynyl moiety, and the direct synthesis to prepare the multicomponent coating containing the two functionalities is enabled via CVD copolymerization on various substrates. The novel coating is comprised of distinguished anchoring sites of electron-deficient alkynes and unsaturated maleimides and is readily to simultaneously proceed doubled “click” reactions. XPS and IRRAS characterizations have verified the chemical composition for the coatings. The demonstration of synergically doubled bioorthogonal reactions is performed via azide-alkyne click reaction and thiol-maleimide coupling reaction to immobilize fluorescently labeled azides and cystines, respectively, under mild conditions in water and without the need of a catalyst, and no trace of cross-reaction is found. Finally, the multicomponent surface is designed to exhibit distinct biological functions by first immobilizing polyethylene glycols that provide a low fouling state (bioinert) to suppress undesired background perturbance, while at the same time, addressing surface bioactive function is performed by tethering Cys-Arg-Glu-Asp-Val (CREDV) peptides on stent substrate and the adhesion of human umbilical vein endothelial cells (HUVECs) are precisely manipulated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:25:08Z (GMT). No. of bitstreams: 1 ntu-102-R00524008-1.pdf: 2944254 bytes, checksum: 035eb292e94e5857f8ba474b822c2389 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3研究動機 15 第二章 馬來醯亞胺基聚對二甲苯之製備及其化學特性分析 18 2.1 藥品及基材之準備 18 2.2馬來醯亞胺基對二甲苯二聚體(4-N-maleimidomethyl-[2.2]paracyclophane)之製備及其特性分析 19 2.3化學氣相沉積聚合法製備馬來醯亞胺基聚對二甲苯poly[(4-N-maleimidomethyl-p-xylylene)-co-(p-xylylene)]鍍膜 24 2.4化學氣相沉積共聚合法製備同時具馬來醯亞胺基及炔基之poly[(4-N-maleimidomethyl-p-xylylene)-co-(4-methyl-propiolate-p-xylylene)-co-(p-xylylene)]共聚物 24 2.5鍍膜之化學特性分析 29 第三章 馬來醯亞胺基聚對二甲苯之表面改質及其應用 35 3.1生物耦合(bioconjugation)技術 35 3.1.1 poly[(4-N-maleimidomethyl-p-xylylene)-co-(p-xylylene)]鍍膜 35 3.1.2 poly[(4-N-maleimidomethyl-p-xylylene)-co-(4-methyl-propiolate-p-xylylene)-co-(p-xylylene)]共聚物 39 3.2蛋白質吸附測試(protein adsorption study) 41 3.2.1 纖維蛋白原(fibrinogen)吸附測試 41 3.2.2 石英晶體微量天秤(QCM)定量分析 43 3.3細胞培養測試(cell culture study) 50 3.3.1 poly[(4-N-maleimidomethyl-p-xylylene)-co-(p-xylylene)]鍍膜之細胞培養測試 50 3.3.2 poly[(4-N-maleimidomethyl-p-xylylene)-co-(4-methyl-propiolate-p-xylylene)-co-(p-xylylene)]共聚物之細胞培養測試 54 第四章 結論與未來展望 60 4.1 結論 60 4.2 未來展望 61 參考資料 65 附錄 68 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用化學氣相沉積聚合法製備馬來醯亞胺基聚對二甲苯鍍膜及其在生物界面之改質應用 | zh_TW |
| dc.title | Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡偉博,游佳欣,黃聲東 | |
| dc.subject.keyword | 化學氣相沉積,馬來醯亞胺基,多功能性鍍膜,“點擊”反應,生物界面, | zh_TW |
| dc.subject.keyword | Chemical vapor deposition,Maleimide,Multifunctional coating,Click chemistry,Biointerface, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
