請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18771完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅仁權(Ren C. Luo) | |
| dc.contributor.author | Meng-Chu Ko | en |
| dc.contributor.author | 柯孟竹 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:24:56Z | - |
| dc.date.copyright | 2014-08-14 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-01 | |
| dc.identifier.citation | [1] J. N. Pires, 'Robot-by-voice: Experiments on commanding an industrial robot using the human voice,' Industrial Robot: An International Journal, vol. 32, pp. 505-511, 2005.
[2] I. B. Celik and M. Kuntalp, 'Development of a robotic-arm controller by using hand gesture recognition,' in International Symposium on INnovations in Intelli-gent SysTems and Applications, INISTA 2012, Trabzon, Turkey. [3] J. N. Pires, G. Veiga, and R. Araujo, 'Programming-by-demonstration in the coworker scenario for SMEs,' Industrial Robot: An International Journal, vol. 36, pp. 73-83, 2009. [4] C. Park, J. H. Kyung, and D. I. Park, 'Development of an industrial robot manipu-lator for the easy and safe human-robot cooperation,' in International Conference on Control, Automation and Systems, ICCAS 2010, Gyeonggi-do, Korea, pp. 678-681. [5] K.-T. Song and C.-H. Hsu, 'A compliance control design for safe motion of a ro-botic manipulator,' in World Congress on Intelligent Control and Automation, WCICA 2011, Taipei, Taiwan, pp. 920-925. [6] W. Lee, Y.-B. Bang, K.-M. Lee, B.-H. Shin, J. K. Paik, and I.-S. Kim, 'Motion teaching method for complex robot links using motor current,' International Journal of Control, Automation and Systems, vol. 8, pp. 1072-1081, 2010. [7] J. Y. Choi, Y. Choi, and B.-J. Yi, 'Force sensor-less interaction force control in the de-burring task using dual-arm manipulation,' in proc. IEEE/RSJ International Conference on Intelligent Robots and System., IROS 2008, Nice, France, pp. 967-973. [8] S. G. Khan, G. Herrmann, T. Pipe, C. Melhuish, and A. Spiers, 'Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control,' in International Journal of Social Robotics, vol. 2, pp. 305-319, 2010. [9] A. Bicchi and G. Tonietti, 'Fast and 'soft-arm' tactics [robot arm design],' in IEEE Robotics & Automation Magazine, vol. 11, pp. 22-33, 2004. [10] M. W. Strohmayr, H. Worn, and G. Hirzinger, 'The DLR Artificial Skin StepⅠ: Uniting Sensitivity and Collision Tolerance,' in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6-10, 2013. [11] A. De Luca, F. Flacco, A. Bicchi, and R. Schiavi, 'Nonlinear decoupled mo-tion-stiffness control and collision detection/reaction for the VSA-II variable stiff-ness device,' in IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS), St. Louis, MO, USA, Oct. 11-15, 2009, pp. 5487-5494. [12] J. van den Berg, D. Ferguson, and J. Kuffner, 'Anytime path planning and replan-ning in dynamic environments,' in Proceedings IEEE International Conference on Robotics and Automation, (ICRA), Orlando, Florida, USA, May 15-19, 2006, pp. 2366-2371. [13] Y. Qian and A. Rahmani, 'Path planning approach for redundant manipulator based on Jacobian pseudoinverse-RRT algorithm,' in International Conference on Intelli-gent Robotics and Applications, (ICIRA), Busan, Republic of Korea,Sep.25- 28, 2013, pp. 706-717. [14] S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Rossmann, A. Albu-Schaffer, and G. Hirzinger, 'Real-time reactive motion generation based on variable attractor dynamics and shaped velocities,' in IEEE/RSJ International Conference on Intelli-gent Robots and Systems (IROS), Taipei, Taiwan, Oct. 18-22, 2010, pp. 3109-3116. [15] H. Reimann, I. Iossifidis, and G. Schoner, 'Generating collision free reaching movements for redundant manipulators using dynamical systems,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Tai-wan, Oct. 18-22, 2010, pp. 5372-5379. [16] F. Flacco, T. Kroger, A. De Luca, and O. Khatib, 'A depth space approach to hu-man-robot collision avoidance,' in IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, May 14-18, 2012, pp. 338-345. [17] F. Flacco, A. De Luca, and O. Khatib, 'Motion control of redundant robots under joint constraints: Saturation in the null space,' in IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, May 14-18, 2012, pp. 285-292. [18] J. Minguez, F. Lamiraux, J. Laumond, “Motion Planning and Obstacle Avoidance”, in Springer Handbook of Robotics, R. Chatila ,Eds. Springer, 2008, pp. 839-844. [19] M. Waringo, et al., 'Efficient Smoothing of Piecewise Linear Paths with Minimal Deviation,' in IEEE/RSJ International Conference on Intelligent Robots and Sys-tems (IROS), 2006, pp. 3867-3872. [20] J. Yongqiao, et al., 'Research on consecutive micro-line interpolation algorithm with local cubic B-spline fitting for high speed machining,' in International Conference on Mechatronics and Automation (ICMA), 2010, pp. 1675-1680. [21] Z. Li, L. Z. Ma, et al., 'Rational quadratic B-spline curves with monotone curva-ture,' Journal of Information and Computational Science, vol. 4, pp. 119-127, 2007. [22] Q. G. Zhang, et al., 'Development and implementation of a NURBS curve motion interpolator,' Robotics and Computer-Integrated Manufacturing, vol. 14, pp. 27-36, 1998. [23] G. R. Luecke, et al., 'Virtual cooperating manipulator control for haptic interaction with NURBS surfaces,' in IEEE International Conference on Robotics and Auto-mation, (ICRA). Part 3 (of 4), April 20- 25, 1997, Albuquerque, NM, USA, pp. 112-117. [24] R. Haschke, et al., 'On-line planning of time-optimal, jerk-limited trajectories,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3248-3253. [25] K. J. Kyriakopoulos, et al., 'Minimum jerk path generation,' in IEEE International Conference on Robotics and Automation (ICRA), 1988, pp. 364-369 vol.1. [26] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory planning: De-sign for real-time applications,” IEEE Trans. Robot. Autom.,vol. 19, no. 1, pp. 42–52, Feb. 2003. [27] T. Kroger, et al., 'Towards on-line trajectory computation,' in IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems (IROS), Oct. 9 –15, 2006, Beijing, China, pp. 736-741. [28] T. Kroger, et al., 'Online trajectory generation: Straight-line trajectories,' IEEE Transactions on Robotics, vol. 27, pp. 1010-1016, 2011. [29] T. Kroger, et al., 'Online Trajectory Generation: Basic Concepts for Instantaneous Reactions to Unforeseen Events,' Robotics, IEEE Transactions on, vol. 26, pp. 94-111, 2010. [30] M. Shimizu, H. Kakuya, W. K. Yoon, K. Kitagaki, and K. Kosuge, “Analytical In-verse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Lim-its and Its Application to Redundancy Resolution,” IEEE Transactions on Robotics, vol. 24, no. 5, Oct. 2008. [31] M. A. Fischler, R. C. Bolles. “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Comm. of the ACM, Vol 24, pp 381-395, 1981. [32] K. Khoshelham, “Accuracy and Resolution of Kinect Depth Data for Indoor Map-ping Applications,” ISPRS Workshop Laser Scanning, vol. 38, pp. 133-138, 2011. [33] Mahalanobis and P. Chandra, “On the generalised distance in statistics,” Proceed-ings of the National Institute of Sciences of India, 2(1): 49–55, 1936. [34] T. Kroger, 'Opening the door to new sensor-based robot applications - The re-flexxes motion libraries,' in IEEE International Conference on Robotics and Au-tomation, (ICRA) , May 9 - 13, Shanghai, China, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18771 | - |
| dc.description.abstract | 隨著科技的進步,離機器人融入我們日常生活的日子越來越近。屆時,人類與機器人將頻繁地在同個工作空間內,合作處理一些服務性、工業性任務,例如在工廠裝配線,實驗室任務,或是居家雜事。然而,隨著人與機器人之間的距離縮短,更多安全性的議題必須被注意討論。另一方面,機器人為因應未事前訓練的工作,快速的重新教導機器人學習一項新任務也人機合作中的困難的挑戰之一。因此,在此篇論文中,我們提出了一個俱有直覺性教學和反應性重現功能的7自由度冗餘機械手臂系統,並詳細的討論了球形-迴轉-球形(S-R-S)組態機械手臂的結構。
首先,在直覺性教學的階段,多模式的直覺性教導是利用解耦控制實現,並將教導的點設置為反應性重現階段的目標點。其次,在反應性重現階段,反應向量產生器(RVG)將分別對於障礙物以及目標點,產生手臂末端點、手臂肘,以及手臂身的排斥、吸引向量。此外,基於向量的線上軌跡產生器(vOTG)被設計來平滑RVG所產生的離散命令,以確保機械手臂運行的穩定性。因此,機械手臂可以反覆地重現在直覺性教學的階段所學的任務,並在重現的過程中,達到全手肢臂的避障。最後的實驗結果,是使用了國立臺灣大學智慧機器人及自動化國際研究中心(NTU- iCeiRA)設計製作的7自由冗餘機械手臂,以及Kinect深度感應器所開發的。 | zh_TW |
| dc.description.abstract | With the advancement of technology, robots will gradually come into our daily life. In the scenario of human-robot collaboration (HRC), robots would most likely share the same workspace with human beings when dealing with service and industrial tasks, such as tasks in assembly line, laboratory, or home environment. However, it cannot be denied that the closer robot and human are, the more safety issues would rise. On the other hand, robots sometimes need to be re-programmed on-the-task to tackle untrained works, which is one of the major challenge in this topic. Thus, in this thesis, we propose an intu-itive-teaching and reactive-replaying system for a 7-DoF redundant robot manipulator, and elucidate the case of spherical–revolute- spherical (S-R-S) type manipulator.
To begin with, in intuitive-teaching phase, the multimodal intuitive teaching is achieved by decoupling control scheme, and the taught waypoints are set as target points (Goal) of replaying phase. Secondly, in reactive-replaying phase, the reaction vector generator (RVG) is advised to generate repulsive and attractive vector for obsta-cle avoidance and goal approach in dynamic environment. Furthermore, the vec-tor-based online trajectory generator (vOTG) is provided to smooth jerky commands from RVG. As a result, the robot can repeat tasks taught in teaching phase, and achieve active whole-arm collision avoidance between targets in replaying phase. Experimental results with NTU-iCeiRA 7-DoF arm developed in our lab and Kinect depth sensor are presented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:24:56Z (GMT). No. of bitstreams: 1 ntu-103-R01921068-1.pdf: 2441552 bytes, checksum: 017762498e256e444e8a65248c01e34c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Era of robotics 1 1.2 Motivation 3 1.3 Objective 4 1.4 Literature review 5 1.4.1 Intuitive teaching 5 1.4.2 Obstacle avoidance and motion planning 6 1.4.3 Trajectory generation 8 1.5 Thesis Organization 10 Chapter 2 Kinematic Model of Manipulators 11 2.1 Spatial Descriptions and Transformation 11 2.1.1 Transformation matrix 11 2.1.2 Three-Angle Representation 12 2.1.3 Rotation along an Arbitrary Vector 13 2.1.4 Unit Quaternions 14 Differential Motion 17 2.2 Manipulator Forward Kinematics 19 2.2.1 Forward Kinematics of a Manipulator 19 2.2.2 Velocity Relationship: The Manipulator Jacobian 21 2.3 Inverse Kinematics for Redundant Joint Manipulators 23 2.3.1 Numerical Solution 23 2.3.2 Analytic IK Solution 26 Chapter 3 Overall System Structure 31 3.1 Overall System Structure 31 3.2 Robot Platform with Intuitive-teaching Function 32 3.3 Trajectory Generation with Reactive-Reaction Function 33 3.4 Perception system 33 3.5 Robot Platform – iCeiRA 7-DoF Redundant Robot Arm 33 3.5.1 Mechanical Design and Forward Kinematics of iCeiRA 7-DoF Arm 33 3.5.2 Analytic Solution for iCeiRA 7-DoF Arm 37 3.5.3 Control system of iCeiRA 7-DoF Arm 44 Chapter 4 Intuitive-Teaching 48 4.1 Intuitive Teaching System without Force Sensor 48 4.2 Kinematic Decoupling 50 4.3 Null Space Self-Motion Auxiliary Torque 51 Chapter 5 Reaction Vector Generator 53 5.1 Problem Statement 53 5.1.1 Case 1: Active Whole-Arm Collision Avoidance 53 5.1.2 Case 2: Goal Attraction in obstacle-free environment 54 5.1.3 Case 3: Reactive-playing 54 5.2 Repulsive vector 55 5.2.1 Repulsive vector for the tip (RVT) 56 5.2.2 Repulsive vector for the wrist (RVθ) 56 5.2.3 Repulsive vector for the robot manipulator body (RVψ) 57 5.3 Attractive vector 58 5.3.1 Attractive vector for the tip (AVT): 58 5.3.2 Attractive vector for the wrist (AVθ) 59 5.3.3 Attractive vector for the robot manipulator body (AVψ) 60 5.4 Reaction Vector 60 5.4.1 Case 1: Active Whole-Arm Collision Avoidance 60 5.4.2 Case 2: Goal Attraction in obstacle-free environment 61 5.4.3 Case 3: Reactive-playing Command 61 5.5 Stability Issue 62 Chapter 6 Online Trajectory Generation 63 6.1 Introduction 63 6.2 Reflexxes Motion Libraries (RML) 66 6.3 Simple Vector Based Trajectory Generator 67 Chapter 7 Perception System 69 7.1 Calibration using RANSAC Algorithm 69 7.2 Perception system with Kinect RGBD sensor 70 7.2.1 Kinect RGBD sensor 70 7.2.2 Imagine processing 72 7.2.3 Filtering 72 Chapter 8 Experimental Results 75 8.1 Calibration 75 8.2 Intuitive-teaching phase 76 8.3 Reactive-playing phase 79 8.3.1 Case1: Whole-arm Collision Avoidance 79 8.3.2 Case2: Goal Attraction in Obstacle-free Environment 83 8.3.3 Case3: Dynamic obstacle environment 84 Chapter 9 Conclusions and Contributions 86 Chapter 10 Future Works 87 REFERENCE 88 VITA 92 | |
| dc.language.iso | en | |
| dc.title | 俱直覺性教導及反應重現功能之反應向量產生器於七自由度冗餘機器手臂之應用 | zh_TW |
| dc.title | Reaction Vector Generation using Intuitive Teaching and Reactive Playing for 7-DoF Redundant Manipulator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳俊宏(Chun-Hung Chen) | |
| dc.contributor.oralexamcommittee | 張帆人(Fan-Ren Chang) | |
| dc.subject.keyword | 7自由度冗餘機械手臂,線上軌跡產生器,教導和重現,避障, | zh_TW |
| dc.subject.keyword | 7-DoF redundant robot manipulator,online trajectory generator,teach and play,obstacle avoidance, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
