請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18754
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉佩玲(Pei-Ling Liu) | |
dc.contributor.author | Yun-Ru Lin | en |
dc.contributor.author | 林昀儒 | zh_TW |
dc.date.accessioned | 2021-06-08T01:23:51Z | - |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-13 | |
dc.identifier.citation | [1] Sansalone, M. and N.J. Carino, Impact-Echo:A Method for Flaw Detection in Concrete Using Transient Stress Waves. NBSIR 86-3452. 1986, Gaithersburg, MD:National Bureau of Standard 222. [2] Lin, Y., Sansalone M. Carino N. J., Finite Element Studies of the Transient Response of Plates Containing Thin Layers and Voids. J. Nondestructive Evaluation, 1990. 9(1): p. 27-47. [3] Lin, Y. and M. Sansalone, Transient Response of Thick Circular and Square Bars Subjected to Transverse Elastic Impact. J. Acoustical Society of America, 1992. 91(2): p. 885-893. [4] Lin, Y. and M. Sansalone, Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method. Materials Journal of the American Concrete Institute, 1992(July/August): p. 394-405. [5] Cheng, C. and M. Sansalone, The Impact-Echo Response of Concrete Plates Containing Delaminations: Numerical, Experimental and Field Studies. Material and Structures, 1993. 26: p. 274-285. [6] Wang, J.-J., et al., Evaluation of Resonant Frequencies of Solid Circular Rods with Impact-Echo Method. Journal of Nondestructive Evaluation, 2010. 29(2): p. 111-121. [7] Zein, A.S. and S.L. Gassman, Frequency Spectrum Analysis of Impact-Echo Waveforms for T-Beams. Journal of Bridge Engineering, 2010. 15(6): p. 705-714. [8] Hong, S.U., et al., Estimation of slab depth, column size and rebar location of concrete specimen using impact echo method. Materials Research Innovations, 2015. 19: p. 1167-1171. [9] Kee, S.-H. and N. Gucunski, Interpretation of Flexural Vibration Modes from Impact-Echo Testing. Journal of Infrastructure Systems, 2016. 22(3). [10] Kohl, C. and D. Streicher, Results of reconstructed and fused NDT-data measured in the laboratory and on-site at bridges. Cement Concrete Composites, 2006. 28(4): p. 402-413. [11] Gucunski, N., et al., Rapid Bridge Deck Condition Assessment Using Three-Dimensional Visualization of Impact Echo Data. Journal of Infrastructure Systems, 2012. 18(1): p. 12-24. [12] Yao, F., G. Chen, and A. Abula, Research on signal processing of segment-grout defect in tunnel based on impact-echo method. Construction and Building Materials, 2018. 187: p. 280-289. [13] Yao, F. and G. Chen, Time-Frequency Analysis of Impact Echo Signals of Grouting Defects in Tunnels. Russian Journal of Nondestructive Testing, 2019. 55(8): p. 581-595. [14] Lin, Y., et al., The effect of post-fire-curing on strength–velocity relationship for nondestructive assessment of fire-damaged concrete strength. Fire Safety Journal, 2011. 46(4): p. 178-185. [15] Lin, Y. and W.C. Su, The Use of Stress Waves for Determining the Depth of Surface-Opening Cracks in Concrete Structures. ACI Materials Journal, 1996. 93(5): p. 494-505. [16] Liu, P.L., et al., Scan of surface-opening cracks in reinforced concrete using transient elastic waves. NDT E International, 2001. 34(3): p. 219-226. [17] Sun, Y., et al., Depth estimation of surface-opening crack in concrete beams using impact-echo and non-contact video-based methods. EURASIP Journal on Image and Video Processing, 2018. 2018(1): p. 144. [18] Lin, Y.F., Evaluating Cover Depth of Steel Fiber Reinforced Concrete Using Impact-Echo Testing, in Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014, H.F. Wu, et al., Editors. 2014. [19] Wang, C.Y., et al., Inspecting the current thickness of a refractory wall inside an operational blast furnace using the impact echo method. Ndt E International, 2014. 66: p. 43-51. [20] Xu, J.M., et al., Damage detection of ballastless railway tracks by the impact-echo method. Proceedings of the Institution of Civil Engineers-Transport, 2018. 171(2): p. 106-114. [21] Liang, M.T. and P.J. Su, Detection of the Corrosion Damage of Rebar in Concrete Using Impact-Echo Method. Cement and Concrete Research, 2001. 31(10): p. 1427-1436. [22] LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444. [23] Martinelli, D., S.N. Shoukry, and S. Varadarajan, Hybrid artificial intelligence approach to continuous bridge monitoring. Transportation research record, 1995. 1497: p. 77. [24] Margrave, F., et al., The use of neural networks in ultrasonic flaw detection. Measurement, 1999. 25(2): p. 143-154. [25] Jarmulak, J., E.J. Kerckhoffs, and P.-P. van’t Veen, Case-based reasoning for interpretation of data from non-destructive testing. Engineering Applications of Artificial Intelligence, 2001. 14(4): p. 401-417. [26] Sambath, S., P. Nagaraj, and N. Selvakumar, Automatic defect classification in ultrasonic NDT using artificial intelligence. Journal of nondestructive evaluation, 2011. 30(1): p. 20-28. [27] Paulraj, M.P., et al., Structural steel plate damage detection using non destructive testing, frame energy based statistical features and artificial neural networks. Procedia Engineering, 2013. 53: p. 376-386. [28] Epp, T., D. Svecova, and Y.-J. Cha. Automated air-coupled impact echo based non-destructive testing using machine learning. in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018. 2018. International Society for Optics and Photonics. [29] Hashimoto, K., et al., Development of Autonomous Hammering Test Method for Deteriorated Concrete Structures Based on Artificial Intelligence and 3D Positioning System, in Asset Intelligence through Integration and Interoperability and Contemporary Vibration Engineering Technologies. 2019, Springer. p. 219-228. [30] Cha, Y.-J., W. Choi, and O. Büyüköztürk, Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 2017. 32(5): p. 361-378. [31] Ali, R. and Y.-J. Cha, Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. Construction and Building Materials, 2019. 226: p. 376-387. [32] Cha, Y.-J., et al., Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Computer-Aided Civil and Infrastructure Engineering, 2018. 33(9): p. 731-747. [33] Beckman, G.H., D. Polyzois, and Y.-J. Cha, Deep learning-based automatic volumetric damage quantification using depth camera. Automation in Construction, 2019. 99: p. 114-124. [34] Ahmed, H., H.M. La, and G. Pekcan. Rebar Detection and Localization for Non-destructive Infrastructure Evaluation of Bridges Using Deep Residual Networks. 2019. Cham: Springer International Publishing. [35] Sarkar, S., et al. Deep learning for structural health monitoring: A damage characterization application. in Annual Conference of the Prognostics and Health Management Society. 2016. [36] Mei, S., Wang, Y. and Wen, G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors, 2018. 18(4): p. 1064. [37] Wang, Z. and T. Oates. Imaging time-series to improve classification and imputation. in Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015. [38] Sarmiento, J.S., C.A.M. Rosales, and A.C. Fajardo. Non-destructive Bridge Pavement Detection Using Impact Sound and Convolutional Neural Network. in Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence. 2019. ACM. [39] Khan, A., et al., Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Composites Part B: Engineering, 2019. 161: p. 586-594. [40] Goldsmith, W. Impact:The Theory and Physical Behavior of Colliding Solids. London: Edward Arnold Ltd., 1965. [41] Hinton, G., Salakhutdinov, R. Reducing the dimensionality of data with neural networks, Science, 313 (5786) (2006), pp. 504-507. [42] Achenbach, J. D. Wave Propagation in Elastic Solids, North-Holland, Amsterdam, (1973), Chap. 7 9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18754 | - |
dc.description.abstract | 敲擊回音法為廣泛應用於檢測混凝土結構之非破壞檢測技術。進行混凝土敲擊回音試驗時,在敲擊過程中常常發生因不當敲擊或混凝土表面劣化等因素造成量測到的回音訊號異常。檢測人員常須在檢測位置敲擊多筆訊號,以目測方式檢視訊號是否正常。此作法相當耗時,且要倚賴操作人員之經驗方能進行判讀,若經驗不足的檢測人員可能誤判而存取了無效訊號,導致錯誤的檢測結果。因此判斷訊號是否正常是敲擊回音試驗成功的第一步。 本研究發展一套人工智慧深度學習網路,以自動判別敲擊回音訊號是否正常。本研究所使用之深度學習網路為卷積神經網路自動編碼器模型,該網路對於二維影像辨識能力十分優越。由於敲擊回音訊號為一維時間域訊號,須先轉換為二維影像,本研究嘗試之轉換方式包括: 1. 將一維時間域原始訊號圖視為二維影像。2. 一維時間域訊號經由Gramian Angular Difference Field(GADF) 轉換為二維影像。3. 一維時間域訊號經由Gramian Angular Summation Field(GASF)轉換為二維影像。將二維影像輸入至卷積神經網路自動編碼器模型進行訓練,此模型內部將提取影像特徵,並還原出與原始輸入影像相近的圖像。 本研究的訓練資料為1100筆的正常訊號,測試資料為100筆異常訊號與80筆正常訊號。因為用以訓練自動編碼器模型的1100筆訊號皆為影像皆為正常訊號,故當測試資料為正常訊號,則重建影像會與原圖很相似,但若測試資料為異常訊號,則重建影像會與原圖有很大的差異。據此,本研究建立了一個分類器來分辨正常與異常訊號。 為提升辨識之準確率,本研究探討五種產生輸入影像的方式:1. 訊號長度3 msec之原始訊號圖;2. 訊號長度3 msec訊號轉為GADF二維影像;3. 訊號長度0.08 msec訊號轉為GADF二維影像;4. 訊號長度依敲擊源大小調整再轉為GADF二維影像;5. 訊號長度依敲擊源大小調整再轉為GASF二維影像。第4、5種方式中的訊號長度非固定,當敲擊鋼珠直徑為6mm,長度設為0.08 msec,當鋼珠直徑變化,訊號長度則依比例調整。此調整之目的在確保表面波出現於輸入影像中。以前述5種影像格式分辨正常與異常訊號的準確率分別為65%、71%、94%、100%及99%,其中以第4種格式的準確率最高。因此,將訊號長度依敲擊源大小調整再轉為GADF二維影像,再輸入本研究所開發之人工智慧辨識系統,可自動偵測異常敲擊回音訊號,有效提升敲擊回音試驗之效率與可靠度。 | zh_TW |
dc.description.abstract | The impact-echo method is effective in non-destructive testing of concrete structures. However, if anomalous signals are measured in the impact-echo test, owing to improper impact or uneven strength of the concrete surface, the follow-up analysis would lead to the wrong result. Therefore, it is a common practice that inspectors conduct multiple tests at the same location to assure that the acquired signals are normal. This is time-consuming and experience-dependent. Worse yet, inexperienced inspectors may make wrong judgments. The objective of this research is to develop a deep learning neural network to automatically identify anomalous impact-echo signals. Since the convolutional neural network is effective in image recognition, a convolution-based auto-encoder neural network is adopted in this study. To apply the neural network, the one-dimensional time-domain signal is firstly converted into an image using one of the following approaches: 1. use the graph of the original curve directly as the input image; 2. convert the time-domain signal to an image by the Gramian angular difference field (GADF) method; 3. convert the time-domain signal to an image by the Gramian angular summation field (GASF) method. When the image is input into the auto-encoder neural network, the max pooling layers generate down-sampled feature maps, which are then upsampled by the upsampling layers to restore the image. The neural network is trained such that the difference between the output and input images is minimized. The training dataset constitutes of 1100 normal signals, and the testing dataset constitutes of 100 anomalous signals and 80 normal signals. The auto-encoder model is trained using only normal signals. Hence, if the input image comes from a normal signal, the output image looks similar to the input image. On the other hand, if the input image comes from an anomalous signal, the output image looks different. Finally, a classifier was constructed based on the difference between the input and output images to judge whether the image came from a normal signal or an anomalous signal. To improve the accuracy of the auto-encoder neural network, 5 ways of generating the input image were discussed in this study: 1. use the graph of the original curve directly as the input image, signal duration = 3 msec; 2. apply GADF to the signal, signal duration = 3 msec; 3. apply GADF to the signal, signal duration = 0.08 msec; 4. apply GADF to the signal, signal duration adjusted according to impact duration; 5. apply GASF to the signal, signal duration adjusted according to impact duration. In the 4th and 5th approaches, the signal duration is set to 0.08 msec when the diameter of the impact steel ball is 6mm. As the diameter varies, the signal duration is adjusted proportionally. The adjustment is made to ensure that the surface wave appears in the image. The accuracies of these approaches are 65%, 71%, 94%, 100%, and 99%, respectively. The fourth approach yields the best result. In conclusion, the auto-encoder neural network developed in this study can detect anomaly of impact echo signals effectively. This neural network can serve as a powerful tool to improve the efficiency and reliability of impact echo tests. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:23:51Z (GMT). No. of bitstreams: 1 U0001-1108202009315000.pdf: 8574191 bytes, checksum: 4598f13148b2b81f705b741f7a1b7edb (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XIII 第一章 前言 1 1.1研究動機 1 1.2文獻回顧 3 1.3全文簡介 6 第二章 敲擊回音法之原理 7 2.1應力波傳遞行為 7 2.2敲擊回音法 10 2.3敲擊回音法之試驗參數 14 2.3.1敲擊源 14 2.3.2訊號長度 15 第三章 深度學習模型 16 3.1 敲擊回音訊號之有效性 16 3.2 時間域訊號二維化 16 3.3 卷積神經網路架構 18 3.3.1 卷積層 19 3.3.2 池化層 20 3.3.2 激活函數(Active Function) 21 3.3.3 損失函數(Loss Function) 22 3.3.4 最佳化(Optimization) 22 3.4 卷積神經網路自動編碼器模型架構 23 3.5 分類器模型架構 26 第四章 資料集 28 4.1 實驗設備與實驗訊號收集方法 28 4.1.1實驗設備 29 4.1.2 實驗訊號收集方法 31 4.2 數值模擬敲擊回音訊號 36 4.2.1 有限元素法之分析步驟 37 4.2.2數值模擬訊號結果與分析 41 4.3 數據生成法 57 4.3.1數值模擬訊號產生雜訊 57 4.3.2 時間域訊號原點調整 57 第五章 深度學習模型識別之結果與討論 59 5.1訊號長度3 msec之原始訊號圖識別結果 61 5.2訊號長度3msec訊號轉GADF二維影像之識別結果 68 5.3訊號長度0.08msec訊號轉GADF二維影像識別結果 76 5.4 訊號長度依敲擊源大小調整轉GADF二維影像識別結果 84 5.5 訊號長度依敲擊源大小調整轉GASF二維影像識別結果 92 第六章 結論 98 參考文獻 100 | |
dc.language.iso | zh-TW | |
dc.title | 以CNN自動編碼器辨識敲擊回音試驗之異常訊號 | zh_TW |
dc.title | The Detection of Anomaly Impact-Echo Signals Using CNN Auto-encoder | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林宜清(Yi-Ching Lin),孫嘉宏(Jia-Hong Sun) | |
dc.subject.keyword | 敲擊回音法,非破壞檢測,異常訊號偵測,深度學習,自動編碼器,卷積神經網路, | zh_TW |
dc.subject.keyword | Impact-echo Method,Non-destructive Test,Detection of Anomalous Signals,Deep Learning,Auto-encoder Network,Convolution Neural Network, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU202002895 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202009315000.pdf 目前未授權公開取用 | 8.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。