請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童心欣(Hsin-Hsin Tung) | |
dc.contributor.author | Jun-Lun Chen | en |
dc.contributor.author | 陳俊綸 | zh_TW |
dc.date.accessioned | 2021-06-08T01:18:05Z | - |
dc.date.copyright | 2020-09-28 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-13 | |
dc.identifier.citation | Alleron, L., Khemiri, A., Koubar, M., Lacombe, C., Coquet, L., Cosette, P., Frere, J. (2013). VBNC Legionella pneumophila cells are still able to produce virulence proteins. Water Research, 47(17), 6606-6617. doi:https://doi.org/10.1016/j.watres.2013.08.032 Baffone, W., Citterio, B., Vittoria, E., Casaroli, A., Campana, R., Falzano, L., Donelli, G. (2003). Retention of virulence in viable but non-culturable halophilic Vibrio spp. International Journal of Food Microbiology, 89(1), 31-39. doi:10.1016/s0168-1605(03)00102-8 Baker, K. H., Hegarty, J. P., Redmond, B., Reed, N. A., Herson, D. S. (2002). Effect of oxidizing disinfectants (Chlorine, Monochloramine, and Ozone) on Helicobacter pylori. Applied and Environmental Microbiology, 68(2), 981. doi:10.1128/AEM.68.2.981-984.2002 Banihashemi, A., Van Dyke, M. I., Huck, P. M. (2012). Long-amplicon propidium monoazide-PCR enumeration assay to detect viable Campylobacter and Salmonella. Journal of Applied Microbiology, 113(4), 863-873. doi:10.1111/j.1365-2672.2012.05382.x Baxter Carole, S., Hofmann, R., Templeton Michael, R., Brown, M., Andrews Robert, C. (2007). Inactivation of adenovirus yypes 2, 5, and 41 in drinking water by UV Light, free chlorine, and monochloramine. Journal of Environmental Engineering, 133(1), 95-103. doi:10.1061/(ASCE)0733-9372(2007)133:1(95) Beck, S. E., Rodriguez, R. A., Hawkins, M. A., Hargy, T. M., Larason, T. C., Linden, K. G. (2016). Comparison of UV-Induced inactivation and RNA Damage in MS2 phage across the germicidal UV spectrum. Applied and Environmental Microbiology, 82(5), 1468-1474. doi:10.1128/AEM.02773-15 Bernstein, C. N., McKeown, I., Embil, J. M., Blanchard, J. F., Dawood, M., Kabani, A., . . . Orr, P. (1999). Seroprevalence of Helicobacter pylori, incidence of gastric cancer, and peptic ulcer-associated hospitalizations in a Canadian Indian population. Digestive Diseases and Sciences 44(4), 668-674. doi:10.1023/a:1026689103952 Besnard, V., Federighi, M., Declerq, E., Jugiau, F., Cappelier, J. M. (2002). Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Veterinary Research, 33(4), 359-370. doi:10.1051/vetres:2002022 Bolton, J. R. (2000). Calculation of ultraviolet fluence rate distributions in an annular reactor: significance of refraction and reflection. Water Research, 34(13), 3315-3324. doi:https://doi.org/10.1016/S0043-1354(00)00087-7 Bounty, S., Rodriguez, R. A., Linden, K. G. (2012). Inactivation of adenovirus using low-dose UV/H2O2 advanced oxidation. Water Research, 46(19), 6273-6278. doi:https://doi.org/10.1016/j.watres.2012.08.036 Bowker, C., Sain, A., Shatalov, M., Ducoste, J. (2011). Microbial UV fluence-response assessment using a novel UV-LED collimated beam system. Water Research, 45(5), 2011-2019. doi:https://doi.org/10.1016/j.watres.2010.12.005 Bulman, D. M., Mezyk, S. P., Remucal, C. K. (2019). The Impact of pH and irradiation wavelength on the production of reactive oxidants during chlorine photolysis. Environmental Science Technology, 53(8), 4450-4459. doi:10.1021/acs.est.8b07225 Buxton, G. V. (1972). Radiation chemistry and photochemistry of oxychlorine ions. Part 2.—Photodecomposition of aqueous solutions of hypochlorite ions. Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O−) in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805 Cappelier, J. M., Besnard, V., Roche, S., Garrec, N., Zundel, E., Velge, P., Federighi, M. (2005). Avirulence of viable but non-culturable Listeria monocytogenes cells demonstrated by in vitro and in vivo models. Vet Res, 36(4), 589-599. doi:10.1051/vetres:2005018 Carr, A. C., van den Berg, J. J., Winterbourn, C. C. (1996). Chlorination of cholesterol in cell membranes by hypochlorous acid. Archives of Biochemistry and Biophysics, 332(1), 63-69. doi:10.1006/abbi.1996.0317 Chatterjee, N., Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 58(5), 235-263. doi:10.1002/em.22087 Chen, S., Li, X., Wang, Y., Zeng, J., Ye, C., Li, X., Yu, X. (2018). Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Research, 142, 279-288. doi:https://doi.org/10.1016/j.watres.2018.05.055 Cheng, F.-C., Jen, J.-F., Tsai, T.-H. (2002). Hydroxyl radical in living systems and its separation methods. Journal of Chromatography B, 781(1), 481-496. doi:https://doi.org/10.1016/S1570-0232(02)00620-7 Cho, M., Gandhi, V., Hwang, T. M., Lee, S., Kim, J. H. (2011). Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine. Water Res, 45(3), 1063-1070. doi:10.1016/j.watres.2010.10.014 Cho, M., Kim, J.-H., Yoon, J. (2006). Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. Water Research, 40(15), 2911-2920. doi:https://doi.org/10.1016/j.watres.2006.05.042 Clark Robert, M., Sivaganesan, M. (1998). Predicting chlorine residuals and formation of TTHMs in drinking water. Journal of Environmental Engineering, 124(12), 1203-1210. doi:10.1061/(ASCE)0733-9372(1998)124:12(1203) Colwell, R.R., Grimes, D.J. (2000). Nonculturable microorganisms in the environment. Springer US. Cortezzo, D. E., Koziol-Dube, K., Setlow, B., Setlow, P. (2004). Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress. Journal of Applied Microbiology, 97(4), 838-852. doi:10.1111/j.1365-2672.2004.02370.x Cromeans, T. L., Kahler, A. M., Hill, V. R. (2010). Inactivation of adenoviruses, enteroviruses, and murine norovirus in Water by free chlorine and monochloramine. Applied and Environmental Microbiology, 76(4), 1028. doi:10.1128/AEM.01342-09 Dong, H., Qiang, Z., Hu, J., Qu, J. (2017). Degradation of chloramphenicol by UV/chlorine treatment: kinetics, mechanism and enhanced formation of halonitromethanes. Water Research, 121, 178-185. doi:https://doi.org/10.1016/j.watres.2017.05.030 Driedger, A., Staub, E., Pinkernell, U., Mariñas, B., Köster, W., Gunten, U. v. (2001). Inactivation of Bacillus subtilis spores and formation of bromate during ozonation. Water Research, 35(12), 2950-2960. doi:https://doi.org/10.1016/S0043-1354(00)00577-7 Dunlop, P. S. M., McMurray, T. A., Hamilton, J. W. J., Byrne, J. A. (2008). Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 196(1), 113-119. doi:https://doi.org/10.1016/j.jphotochem.2007.11.024 Dwidjosiswojo, Z., Richard, J., Moritz, M. M., Dopp, E., Flemming, H.-C., Wingender, J. (2011). Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. International Journal of Hygiene and Environmental Health, 214(6), 485-492. doi:https://doi.org/10.1016/j.ijheh.2011.06.004 EPA, U. (2006). Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule, EPA. Fang, J., Fu, Y., Shang, C. (2014). The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environmental Science Technology, 48(3), 1859-1868. doi:10.1021/es4036094 Feng, Y., Smith, D. W., Bolton, J. R. (2007). Photolysis of aqueous free chlorine species (HOCl and OCl–) with 254 nm ultraviolet light. Journal of Environmental Engineering and Science, 6(3), 277-284. doi:10.1139/s06-052 Foegeding, P. M., Hemstapat, V., Giesbrecht, F. G. (1986). Chlorine dioxide inactivation of Bacillus and Clostridium spores. Journal of Food Science, 51(1), 197-201. doi:10.1111/j.1365-2621.1986.tb10869.x Forsyth, J. E., Zhou, P., Mao, Q., Asato, S. S., Meschke, J. S., Dodd, M. C. (2013). Enhanced inactivation of Bacillus subtilis spores during solar photolysis of free available chlorine. Environmental Science Technology, 47(22), 12976-12984. doi:10.1021/es401906x Gao, Z.-C., Lin, Y.-L., Xu, B., Pan, Y., Xia, S.-J., Gao, N.-Y., Chen, M. (2017). Degradation of acrylamide by the UV/chlorine advanced oxidation process. Chemosphere, 187, 268-276. doi:https://doi.org/10.1016/j.chemosphere.2017.08.085 Gao, Z.-C., Lin, Y.-L., Xu, B., Xia, Y., Hu, C.-Y., Zhang, T.-Y., . . . Gao, N.-Y. (2019). Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 154, 199-209. doi:https://doi.org/10.1016/j.watres.2019.02.004 García, M. T., Jones, S., Pelaz, C., Millar, R. D., Abu Kwaik, Y. (2007). Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol, 9(5), 1267-1277. doi:10.1111/j.1462-2920.2007.01245.x Gensberger, E. T., Polt, M., Konrad-Köszler, M., Kinner, P., Sessitsch, A., Kostić, T. (2014). Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Research, 67, 367-376. doi:https://doi.org/10.1016/j.watres.2014.09.022 Gilbert, B. C., Stell, J. K., Peet, W. J., Radford, K. J. (1988). Generation and reactions of the chlorine atom in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84(10), 3319-3330. doi:10.1039/F19888403319 Goldstein, S., Rabani, J. (2008). The ferrioxalate and iodide–iodate actinometers in the UV region. Journal of Photochemistry and Photobiology A: Chemistry, 193(1), 50-55. doi:https://doi.org/10.1016/j.jphotochem.2007.06.006 Grégori, G., Citterio, S., Ghiani, A., Labra, M., Sgorbati, S., Brown, S., Denis, M. (2001). Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Applied and Environmental Microbiology, 67(10), 4662. doi:10.1128/AEM.67.10.4662-4670.2001 Gray, M. J., Wholey, W.-Y., Jakob, U. (2013). Bacterial responses to reactive chlorine species. Annual Review of Microbiology, 67(1), 141-160. doi:10.1146/annurev-micro-102912-142520 Guo, M., Huang, J., Hu, H., Liu, W. (2011). Growth and repair potential of three species of bacteria in reclaimed wastewater after UV Disinfection. Biomedical and Environmental Sciences, 24(4), 400-407. doi:https://doi.org/10.3967/0895-3988.2011.04.011 Guo, M., Huang, J., Hu, H., Liu, W., Yang, J. (2012). UV inactivation and characteristics after photoreactivation of Escherichia coli with plasmid: Health safety concern about UV disinfection. Water Research, 46(13), 4031-4036. doi:https://doi.org/10.1016/j.watres.2012.05.005 Gutierrez, L., Mylon, S. E., Nash, B., Nguyen, T. H. (2010). Deposition and Aggregation kinetics of rotavirus in divalent cation solutions. Environmental Science Technology, 44(12), 4552-4557. doi:10.1021/es100120k Halliwell, B. (1998). Can oxidative DNA damage be used as a biomarker of cancer risk in humans? Problems, resolutions and preliminary results from nutritional supplementation studies. Free Radical Research, 29(6), 469-486. doi:10.1080/10715769800300531 Hamamoto, A., Mori, M., Takahashi, A., Nakano, M., Wakikawa, N., Akutagawa, Kinouchi, Y. (2007). New water disinfection system using UVA light-emitting diodes. Journal of Applied Microbiology, 103(6), 2291-2298. doi:10.1111/j.1365-2672.2007.03464.x Harm, W. (1980). Biological effects of ultraviolet radiation. United Kingdom: University Press. Hoyer, O. (1998). Testing performance and monitoring of UV systems for drinking water disinfection. Water Supply. Hua, G., Reckhow, D. A. (2008). DBP formation during chlorination and chloramination: Effect of reaction time, pH, dosage, and temperature. Journal AWWA, 100(8), 82-95. doi:10.1002/j.1551-8833.2008.tb09702.x Cappelier, J. M., Besnard, V., Roche, S. M., Velge, P., Federighi, M. (2007). Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Veterinary research, 38(4), 573–583. doi:https://doi.org/10.1051/vetres:2007017 Jung, Y. J., Oh, B. S., Kang, J.-W. (2008). Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores. Water Research, 42(6), 1613-1621. doi:https://doi.org/10.1016/j.watres.2007.10.008 Kim, M., Wuertz, S. (2015). Survival and persistence of host-associated bacteroidales cells and DNA in comparison with Escherichia coli and Enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR. Water Research, 87, 182-192. doi:https://doi.org/10.1016/j.watres.2015.09.014 Kwon, M., Yoon, Y., Kim, S., Jung, Y., Hwang, T.-M., Kang, J.-W. (2018). Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV. Science of The Total Environment, 637-638, 1351-1357. doi:https://doi.org/10.1016/j.scitotenv.2018.05.080 Lee, D.-G., Park, S. J., Kim, S.-J. (2007). Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. Journal of Microbiology and Biotechnology, 17(9), 1558-1562. Retrieved from http://europepmc.org/abstract/MED/18062238 Lester, Y., Avisar, D., Mamane, H. (2010). Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process. Environmental Technology, 31(2), 175-183. doi:10.1080/09593330903414238 Li, G.-Q., Huo, Z.-Y., Wu, Q.-Y., Lu, Y., Hu, H.-Y. (2018). Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Science of The Total Environment, 639, 1233-1240. doi:https://doi.org/10.1016/j.scitotenv.2018.05.240 Li, G.-Q., Wang, W.-L., Huo, Z.-Y., Lu, Y., Hu, H.-Y. (2017). Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli. Water Research, 126, 134-143. doi:https://doi.org/10.1016/j.watres.2017.09.030 Liltved, H., Landfald, B. (1996). Influence of liquid holding recovery and photoreactivation on survival of ultraviolet-irradiated fish pathogenic bacteria. Water Research, 30(5), 1109-1114. doi:https://doi.org/10.1016/0043-1354(95)00276-6 Linden, K. G., Thurston, J., Schaefer, R., Malley, J. P. (2007). Enhanced UV inactivation of adenoviruses under polychromatic UV Lamps. Applied and Environmental Microbiology, 73(23), 7571. doi:10.1128/AEM.01587-07 Liu, Y., Wang, C., Tyrrell, G., Li, X.-F. (2010). Production of Shiga-like toxins in viable but nonculturable Escherichia coli O157:H7. Water Research, 44(3), 711-718. doi:https://doi.org/10.1016/j.watres.2009.10.005 MaCkey, E. D., Hargy, T. M., Wright, H. B., Malley Jr, J. P., Cushing, R. S. (2002). Comparing Cryptosporidium and MS-2 bioassays—implications for UV Reactor validation. Journal AWWA, 94(2), 62-69. doi:10.1002/j.1551-8833.2002.tb09407.x Mamane-Gravetz, H., Linden, K. G., Cabaj, A., Sommer, R. (2005). Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection. Environmental Science Technology, 39(20), 7845-7852. doi:10.1021/es048446t Mamane, H., Shemer, H., Linden, K. G. (2007). Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. Journal of Hazardous Materials, 146(3), 479-486. doi:https://doi.org/10.1016/j.jhazmat.2007.04.050 Maness, P.-C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., Jacoby, W. A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 65(9), 4094. doi:10.1128/AEM.65.9.4094-4098.1999 Martin, N., Gehr, R. (2007). Reduction of photoreactivation with the combined UV/peracetic acid Process or by delayed exposure to visible light. Water Environment Research, 79(9), 991-999. doi:10.2175/106143007X214010 McKay, A. M. (1992). Viable but non-culturable forms of potentially pathogenic bacteria in water. Letters in Applied Microbiology, 14(4), 129-135. doi:10.1111/j.1472-765X.1992.tb00667.x Moan, J., Peak, M. J. (1989). Effects of UV radiation on cells. Journal of Photochemistry and Photobiology B: Biology, 4(1), 21-34. doi:https://doi.org/10.1016/1011-1344(89)80099-5 Moreno, Y., Piqueres, P., Alonso, J. L., Jiménez, A., González, A., Ferrús, M. A. (2007). Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. Water Research, 41(15), 3490-3496. doi:https://doi.org/10.1016/j.watres.2007.05.020 Nelson, K. Y., McMartin, D. W., Yost, C. K., Runtz, K. J., Ono, T. (2013). Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination. Environmental Science and Pollution Research, 20(8), 5441-5448. doi:10.1007/s11356-013-1564-6 Niki, E., Yoshida, Y., Saito, Y., Noguchi, N. (2006). Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research communications, 338, 668-676. doi:10.1016/j.bbrc.2005.08.072 Nocker, A., Cheung, C.-Y., Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods, 67(2), 310-320. doi:https://doi.org/10.1016/j.mimet.2006.04.015 Oguma, K., Katayama, H., Mitani, H., Morita, S., Hirata, T., Ohgaki, S. (2001). Determination of pyrimidine dimers in Escherichia coli and Cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair. Applied and Environmental Microbiology, 67(10), 4630. doi:10.1128/AEM.67.10.4630-4637.2001 Oguma, K., Katayama, H., Ohgaki, S. (2004). Photoreactivation of Legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp. Water Research, 38(11), 2757-2763. doi:https://doi.org/10.1016/j.watres.2004.03.024 Oliver, J. D. (2000). The public health significance of viable but nonculturable bacteria. In R. R. Colwell D. J. Grimes (Eds.), Nonculturable Microorganisms in the Environment (pp. 277-300). Boston, MA: Springer US. Oncu, N. B., Menceloglu, Y. Z., Balcioglu, I. A. (2011). Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. Journal of Advanced Oxidation Technologies, 14(2), 196-203. Retrieved from http://research.sabanciuniv.edu/17891/ Orta de Velásquez, M. T., Yáñez Noguez, I., Casasola Rodríguez, B., Román Román, P. I. (2017). Effects of ozone and chlorine disinfection on VBNC Helicobacter pylori by molecular techniques and FESEM images. Environmental Technology, 38(6), 744-753. doi:10.1080/09593330.2016.1210680 Pan, Y., Li, X., Fu, K., Deng, H., Shi, J. (2019). Degradation of metronidazole by UV/chlorine treatment: efficiency, mechanism, pathways and DBPs formation. Chemosphere, 224, 228-236. doi:https://doi.org/10.1016/j.chemosphere.2019.02.081 Pereira, V. J., Marques, R., Marques, M., Benoliel, M. J., Barreto Crespo, M. T. (2013). Free chlorine inactivation of fungi in drinking water sources. Water Research, 47(2), 517-523. doi:https://doi.org/10.1016/j.watres.2012.09.052 Pham, M., Mintz, E. A., Nguyen, T. H. (2009). Deposition kinetics of bacteriophage MS2 to natural organic matter: Role of divalent cations. Journal of Colloid and Interface Science, 338(1), 1-9. doi:https://doi.org/10.1016/j.jcis.2009.06.025 Ramamurthy, T., Ghosh, A., Pazhani, G. P., Shinoda, S. (2014). Current Perspectives on Viable but Non-Culturable (VBNC) pathogenic bacteria. Frontiers in Public Health, 2(103). doi:10.3389/fpubh.2014.00103 Rattanakul, S., Oguma, K. (2017). Analysis of hydroxyl radicals and inactivation mechanisms of bacteriophage MS2 in response to a simultaneous application of UV and chlorine. Environmental Science Technology 2017 51 (1), 455-462 DOI: 10.1021/acs.est.6b03394 Rattanakul, S., Oguma, K., Sakai, H., Takizawa, S. (2014). Inactivation of viruses by combination processes of UV and chlorine. Journal of Water and Environment Technology, 12(6), 511-523. doi:10.2965/jwet.2014.511 Rawsthorne, H., Dock, C. N., Jaykus, L. A. (2009). PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Applied and Environmental Microbiology, 75(9), 2936. doi:10.1128/AEM.02524-08 Reissbrodt, R., Rienaecker, I., Romanova, J. M., Freestone, P. P., Haigh, R. D., Lyte, Williams, P. H. (2002). Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl Environ Microbiol, 68(10), 4788-4794. doi:10.1128/aem.68.10.4788-4794.2002 Remucal, C. K., Manley, D. (2016). Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment. Environmental Science: Water Research Technology, 2(4), 565-579. doi:10.1039/C6EW00029K Ridgway, H. F., Olson, B. H. (1982). Chlorine resistance patterns of bacteria from two drinking water distribution systems. Applied and Environmental Microbiology, 44(4), 972. Retrieved from http://aem.asm.org/content/44/4/972.abstract Riesenman, P. J., Nicholson, W. L. (2000). Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Applied and Environmental Microbiology, 66(2), 620. doi:10.1128/AEM.66.2.620-626.2000 Sancar, A., Lindsey-Boltz, L. A., Ünsal-Kaçmaz, K., Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73(1), 39-85. doi:10.1146/annurev.biochem.73.011303.073723 Santiago, P., Moreno, Y., Ferrús, M. A. (2015). Identification of viable Helicobacter pylori in drinking water supplies by cultural and molecular techniques. Helicobacter, 20(4), 252-259. doi:10.1111/hel.12205 Scaturro, M., Fontana, S., Dell’eva, I., Helfer, F., Marchio, M., Stefanetti, M. V., . . . Ricci, M. L. (2016). A multicenter study of viable PCR using propidium monoazide to detect Legionella in water samples. Diagnostic Microbiology and Infectious Disease, 85(3), 283-288. doi:https://doi.org/10.1016/j.diagmicrobio.2016.04.009 Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101(3), 514-525. doi:10.1111/j.1365-2672.2005.02736.x Sichel, C., Garcia, C., Andre, K. (2011). Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Research, 45(19), 6371-6380. doi:https://doi.org/10.1016/j.watres.2011.09.025 Sinha, R. P. (2002). UV-induced DNA damage and repair: a review. Sobsey, M. D., Fuji, T., Shields, P. A. (1988). Inactivation of hepatitis a virus and model viruses in water by free chlorine and monochloramine. Water Science and Technology, 20(11-12), 385-391. doi:10.2166/wst.1988.0310 Sommer, R., Pribil, W., Appelt, S., Gehringer, P., Eschweiler, H., Leth, H., Haider, T. (2001). Inactivation of bacteriophages in water by means of non-ionizing (uv-253.7 nm) and ionizing (gamma) radiation: a comparative approach. Water Research, 35(13), 3109-3116. doi:https://doi.org/10.1016/S0043-1354(01)00030-6 Song, K., Mohseni, M., Taghipour, F. (2016). Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Research, 94, 341-349. doi:https://doi.org/10.1016/j.watres.2016.03.003 Sun, F., Chen, J., Zhong, L., Zhang, X.-h., Wang, R., Guo, Q., Dong, Y. (2008). Characterization and virulence retention of viable but nonculturable Vibrio harveyi. FEMS Microbiology Ecology, 64(1), 37-44. doi:10.1111/j.1574-6941.2008.00442.x Taniyasu, Y., Kasu, M., Makimoto, T. (2006). An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441(7091), 325-328. doi:10.1038/nature04760 Thurston-Enriquez, J. A., Haas, C. N., Jacangelo, J., Gerba, C. P. (2003). Chlorine inactivation of adenovirus type 40 and feline calicivirus. Applied and Environmental Microbiology, 69(7), 3979. doi:10.1128/AEM.69.7.3979-3985.2003 van Frankenhuyzen, J. K., Trevors, J. T., Lee, H., Flemming, C. A., Habash, M. B. (2011). Molecular pathogen detection in biosolids with a focus on quantitative PCR using propidium monoazide for viable cell enumeration. Journal of Microbiological Methods, 87(3), 263-272. doi:https://doi.org/10.1016/j.mimet.2011.09.007 Venkobachar, C., Iyengar, L., Prabhakara Rao, A. V. S. (1977). Mechanism of disinfection: Effect of chlorine on cell membrane functions. Water Research, 11(8), 727-729. doi:https://doi.org/10.1016/0043-1354(77)90114-2 Vilhunen, S., Särkkä, H., Sillanpää, M. (2009). Ultraviolet light-emitting diodes in water disinfection. Environmental Science and Pollution Research, 16(4), 439-442. doi:10.1007/s11356-009-0103-y Wang, H., Edwards, M. A., Falkinham, J. O., Pruden, A. (2013). Probiotic approach to pathogen control in premise plumbing systems? A Review. Environmental Science Technology, 47(18), 10117-10128. doi:10.1021/es402455r Wang, W.-L., Wu, Q.-Y., Huang, N., Wang, T., Hu, H.-Y. (2016). Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species. Water Research, 98, 190-198. doi:https://doi.org/10.1016/j.watres.2016.04.015 Wang, W.-L., Wu, Q.-Y., Li, Z.-M., Lu, Y., Du, Y., Wang (2017). Light-emitting diodes as an emerging UV source for UV/chlorine oxidation: carbamazepine degradation and toxicity changes. Chemical Engineering Journal, 310, 148-156. doi:https://doi.org/10.1016/j.cej.2016.10.097 Watts, M. J., Linden, K. G. (2007). Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research, 41(13), 2871-2878. doi:https://doi.org/10.1016/j.watres.2007.03.032 Westerhoff, P., Mezyk, S. P., Cooper, W. J., Minakata, D. (2007). Electron Pulse Radiolysis determination of hydroxyl radical rate constants with suwannee river fulvic acid and other dissolved organic matter isolates. Environmental Science Technology, 41(13), 4640-4646. doi:10.1021/es062529n WHO. (2006). Guidelines for drinking-water quality. Wilson, B. (1992). Coliphage MS-2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens. Proc. of the AWWA Water Quality Technology Conference. Toronto, Ont., AWWA, 1992. Retrieved from https://ci.nii.ac.jp/naid/10013116305/en/ Wingender, J., Flemming, H.-C. (2011). Biofilms in drinking water and their role as reservoir for pathogens. International Journal of Hygiene and Environmental Health, 214(6), 417-423. doi:https://doi.org/10.1016/j.ijheh.2011.05.009 Wu, Z., Fang, J., Xiang, Y., Shang, C., Li, X., Meng, F., Yang, X. (2016). Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Research, 104, 272-282. doi:https://doi.org/10.1016/j.watres.2016.08.011 Wu, Z., Guo, K., Fang, J., Yang, X., Xiao, H., Hou, S., Chen, L. (2017). Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. Water Research, 126, 351-360. doi:https://doi.org/10.1016/j.watres.2017.09.028 Xiang, Y., Fang, J., Shang, C. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Research, 90, 301-308. doi:https://doi.org/10.1016/j.watres.2015.11.069 Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., Colwell, R. R. (1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 8(4), 313-323. doi:10.1007/BF02010671 Yin, R., Ling, L., Shang, C. (2018). Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Research, 142, 452-458. doi:https://doi.org/10.1016/j.watres.2018.06.018 Young, S. B., Setlow, P. (2003). Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. Journal of Applied Microbiology, 95(1), 54-67. doi:10.1046/j.1365-2672.2003.01960.x Young, S. B., Setlow, P. (2004). Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. Journal of Applied Microbiology, 96(5), 1133-1142. doi:10.1111/j.1365-2672.2004.02236.x Zhang, B., Xian, Q., Lu, J., Gong, T., Li, A., Feng, J. (2016). Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone. Journal of Water and Health, 15(2), 185-195. doi:10.2166/wh.2016.136 Zhang, S., Ye, C., Lin, H., Lv, L., Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environmental Science Technology, 49(3), 1721-1728. doi:10.1021/es505211e Zhang, W., DiGiano, F. A. (2002). Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors. Water Research, 36(6), 1469-1482. doi:https://doi.org/10.1016/S0043-1354(01)00361-X Zou, X.-Y., Lin, Y.-L., Xu, B., Zhang, T.-Y., Hu, C.-Y., Cao, T.-C., . . . Gao, N.-Y. (2019). Enhanced ronidazole degradation by UV-LED/chlorine compared with conventional low-pressure UV/chlorine at neutral and alkaline pH values. Water Research, 160, 296-303. doi:https://doi.org/10.1016/j.watres.2019.05.072 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18665 | - |
dc.description.abstract | 紫外光發光二極體(UV-C LED)是新型的紫外光光源具有能夠選擇特定波長的能力,本研究將利用紫外光發光二極體結合自由餘氯的高級氧化處理程序,評估其能否有效提升對於指標微生物MS-2 coliphage與Bacillus subtilis孢子的抑制能力,探討在不同紫外光波長、pH及水樣參與反應下對於殺菌能力的影響及自由基於反應中所扮演的角色,並以碘化丙啶即時定量聚合酶連鎖反應(PMA qPCR)檢視Bacillus subtilis孢子細胞膜在不同消毒方式下的損傷程度。由批次式殺菌實驗的結果可以發現將紫外光結合3 mg/L之自由餘氯對於MS-2 coliphage的抑制效果即有協同作用(synergistic)出現,而對於Bacillus subtilis孢子則需將初始自由餘氯提升到6 mg/L及9 mg/L才會有較明顯地協同作用(synergistic)出現,若以反應動力常數(k, obs)進行比較,以UV-C LED (275 nm)結合自由餘氯對於指標微生物的抑制效果皆會優於LPUV(254 nm),顯示以波長275 nm的紫外光更加適合作為本研究中UV/chlorine反應的紫外光光源使用;當在UV/chlorine反應中加入t-BuOH做為radical scavenger後,LPUV/chlorine和UV-C/chlorine對於抑制MS-2 coliphage生長能力的增強效果會分別減少69.2%與84.4%,而Bacillus subtilis孢子再添加t-BuOH後原本的增強效果更是幾乎消失,顯示UV/chlorine反應中自由基的生成與否確實是提升微生物抑制能力的關鍵;在碘化丙啶即時定量聚合酶連鎖反應的實驗結果發現,以UV-C LED在紫外光劑量17.28 mJ/cm2及初始餘氯濃度6 mg/L中暴露12分鐘下皆不會對Bacillus subtilis 孢子細胞膜的通透性產生影響,但在相同反應時間下經UV-C LED /chlorine處理之spo0A功能性基因的濃度會由107.2 copy numbers/mL下降至104.8 copy numbers/mL,顯示經UV-C LED/chlorine處理下能大幅地提昇對於Bacillus subtilis 孢子細胞膜的破壞程度。 | zh_TW |
dc.description.abstract | Ultraviolet light-emitting diode (UV-LED) is a novel UV light source which has the ability to select specific UV wavelength. Many studies have demonstrated the effectiveness of water disinfection by UV-LED. Recently, UV/chlorine also an emerging advanced oxidation process (AOPs), has been applied in waste water treatment procedures to promote the removal pollution. This study is undertaken to evaluate UV-C LED/chlorine process to check whether it could effectively enhance the inactivation of MS-2 coliphage and Bacillus subtilis spores. Moreover, we also discuss possible influence on the inactivation mechanism under different UV wavelengths, pH and water samples. At last, propidium monozide quantitative real-time PCR (PMA qPCR) was used to detect the degree of microbial cell membrane damage by UV-C LED/chlorine treatment and compare it with general disinfection methods. According to the results of batch inactivation experiments, it can be concluded that the combination of ultraviolet light (LPUV or UV-C LED) and 3 mg/L of free residual chlorine has a synergistic effect on MS-2 coliphage. However, for Bacillus subtilis spores, it is necessary to increase the initial free residual chlorine to 6 mg/L and 9 mg/L to have a significant synergistic effect. Comparing fluence-based inactivation rate constant (k, obs), UV-C LED (275 nm) /chlorine is better than LPUV (254 nm)/chlorine. The data shows that the UV wavelength at 275 nm may be more suitable for UV/chlorine inactivation process than 254 nm. When t-BuOH is added as a radical scavenger in the UV/chlorine reaction, the enhancement effect of LPUV/chlorine and UV-C LED/chlorine on the inactivation of MS-2 coliphage is reduced by 69.2% and 84.4%, respectively. As for the Bacillus subtilis spores after adding t-BuOH, the enhancement effect almost disappeared. This phenomenon indicates that the generation of radicals in the UV/chlorine reaction is indeed a key factor for enhancing the inactivation of microorganisms. Based on the results of propidium monozide real-time quantitative polymerase chain reaction(PMA-qPCR), we found that exposure of UV-LED to UV dose of 17.28 mJ/cm2 and initial residual chlorine concentration of 6 mg/L for 12 minutes does not affect the permeability of Bacillus subtilis spores cell membrane. However, under the same reaction time, the concentration of UV-C/chlorine-treated spo0A functional genes decrease from 107.2 copy numbers/mL to 104.8 copy numbers/mL. This data shows that UV-C LED/chlorine can greatly increase the damage to the cell membrane of Bacillus subtilis spores. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:18:05Z (GMT). No. of bitstreams: 1 U0001-1108202014083500.pdf: 7454292 bytes, checksum: 96fd3160dd48b2df2b01206928027619 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 I Abstract ii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 4 第二章 文獻回顧 5 2.1 常見之自來水消毒程序及殺菌原理 5 2.2 加氯及紫外光殺菌所面臨之挑戰 6 2.2.1 具活性但不可培養狀態(VBNC state) 6 2.2.2 DNA受紫外光損傷之修復機制 8 2.3 紫外光發光二極體(ultraviolet light-emitting diodes, UV-LED) 9 2.4 紫外光結合自由餘氯光降解反應(UV/chlorine) 11 2.5 碘化丙啶即時定量聚合酶連鎖反應(PMA qPCR) 13 第三章 材料與方法 15 3.1 研究架構 15 3.2 批次式殺菌實驗反應裝置 17 3.2.1 紫外光光源 17 3.2.2 批次式反應裝置設計 18 3.2.3 環境水樣之採集方法 21 3.2.4 微生物失活反應動力常數 21 3.3 指標微生物培養及檢測方法 22 3.3.1 大腸桿菌(Escherichia coli) 22 3.3.2 MS-2噬菌體(MS-2 coliphage) 22 3.3.3 枯草桿菌孢子(Bacillus subtilis spore) 23 3.4 紫外光劑量(UV fluence rate)測定方法 25 3.5 自由餘氯(free chlorine)濃度測定方法 26 3.6 碘化丙啶即時定量聚合酶連鎖反應(PMA Real-time qPCR) 27 3.6.1 核酸萃取與保存方法 27 3.6.2 功能性基因spo0A標準品製備 28 3.6.2.1 目標基因擴增與切膠純化 28 3.6.2.2 TA Cloning 29 3.6.2.3 質體核酸萃取步驟 30 3.6.3 碘化丙啶(Propidium monozide, PMA)前處理方法 31 3.6.4 即時定量聚合酶連鎖反應(quantitative real-time PCR) 31 3.6.4.1 即時定量聚合酶連鎖反應檢量線製備 32 3.8 統計及分析方法 32 第四章 結果與討論 33 4.1 紫外光光源fluence rate 33 4.2 評估紫外光發光二極體結合自由餘氯對指標微生物之抑制效果 34 4.2.1 紫外光 34 4.2.1.1 MS-2 coliphage 34 4.2.1.2 Bacillus subtilis孢子 36 4.2.2 紫外光結合自由餘氯(UV/chlorine) 38 4.2.2.1 MS-2 coliphage 38 4.2.2.2 Bacillus subtilis孢子 40 4.2.2.3 比較不同紫外光光源結合自由餘氯之抑制能力 44 4.2.3 探討自由基對於UV/chlorine抑制微生物生長能力之影響 46 4.2.4 不同pH下對於UV/chlorine抑制微生物生長之影響 51 4.2.5 應用於環境水體 55 4.3 UV LED/chlorine對於Bacillus subtilis孢子細胞膜完整性之影響 58 4.3.1 驗證PMA-qPCR偵測細胞膜完整性之能力 58 4.3.2 不同消毒方法對於Bacillus subtilis孢子細胞膜完整性之影響 61 第五章 結論與建議 66 5.1 結論 66 5.2 建議 68 參考文獻 69 附錄 81 | |
dc.language.iso | zh-TW | |
dc.title | 探討以紫外光發光二極體結合自由餘氯提升對於MS-2 coliphage與Bacillus subtilis孢子之抑制效果 | zh_TW |
dc.title | Enhanced inactivation of MS-2 coliphage and Bacillus subtilis spore by UV-C LED/free chlorine process | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 于昌平(Chang-Ping Yu),陳俊堯(Chun-Yao Chen),林居慶(Chu-Ching Lin),江殷儒(Yin-Ru Chiang) | |
dc.subject.keyword | 紫外光發光二極體,自由餘氯,高級氧化處理,MS-2 噬菌體,枯草桿菌孢子,碘化丙啶即時定量聚合酶連鎖反應, | zh_TW |
dc.subject.keyword | Ultraviolet light-emitting diodes (UV-LED),UV/chlorine,Advanced oxidation process (AOPs),MS-2 coliphage,Bacillus subtilis spores,propidium monozide real-time quantitative polymerase chain reaction, | en |
dc.relation.page | 88 | |
dc.identifier.doi | 10.6342/NTU202002942 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202014083500.pdf 目前未授權公開取用 | 7.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。