Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬
dc.contributor.authorKai-Chun Changen
dc.contributor.author張凱鈞zh_TW
dc.date.accessioned2021-06-08T01:14:29Z-
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation1. Hargreaves, K.M., ed. Seltzer And Bender's Dental Pulp. 3rd ed., ed. S. Seltzer and H.E. Goodis. 2002, Quintessence Publishing.
2. Sloan, A.J. and A.J. Smith, Stimulation of the dentine–pulp complex of rat incisor teeth by transforming growth factor-β isoforms 1–3 in vitro. Archives of Oral Biology, 1999. 44(2): p. 149-156.
3. Sveen, O.B. and R.R. Hawes, Differentiation of new odontoblasts and dentine bridge formation in rat molar teeth after tooth grinding. Archives of Oral Biology, 1968. 13(12): p. 1399-IN3.
4. Ruch, J.V., Odontoblast commitment and differentiation. Biochemistry and Cell Biology, 1998. 76(6): p. 923-938.
5. Cvek, M., Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Dental Traumatology, 1992. 8(2): p. 45-55.
6. Zhang, W. and P.C. Yelick, Vital Pulp Therapy -- Current Progress of Dental Pulp Regeneration and Revascularization. International Journal of Dentistry, 2010. 2010.
7. Stanley, H.R., Pulp capping: Conserving the dental pulp—Can it be done? Is it worth it? Oral Surgery, Oral Medicine, Oral Pathology, 1989. 68(5): p. 628-639.
8. Cvek, M., et al., Pulp reactions to exposure after experimental crown fractures or grinding in adult monkeys. Journal of endodontics, 1982. 8(9): p. 391-397.
9. Trope, M., Regenerative Potential of Dental Pulp. Journal of Endodontics, 2008. 34(7, Supplement): p. S13-S17.
10. Tziafas, D., A.J. Smith, and H. Lesot, Designing new treatment strategies in vital pulp therapy. Journal of Dentistry, 2000. 28(2): p. 77-92.
11. Glickman, G.N. and N.S. Seale, AAE and AAPD Symposium Overview: Emerging Science in Pulp Therapy—New Insights Into Dilemmas and Controversies. Journal of endodontics, 2008. 34(7): p. S1.
12. Turner, D., C. Marfurt, and C. Sattelberg, Demonstration of physiological barrier between pulpal odontoblasts and its perturbation following routine restorative procedures: a horseradish peroxidase tracing study in the rat. Journal of dental research, 1989. 68(8): p. 1262-1268.
13. Jontell, M. and G. Bergenholtz, Accessory cells in the immune defense of the dental pulp. Proceedings of the Finnish Dental Society. Suomen Hammaslaakariseuran toimituksia, 1992. 88: p. 344.
14. Hess, W., The treatment of teeth with exposed healthy pulps. 1950.
15. Zander, H., Reaction of the pulp to calcium hydroxide. Journal of Dental Research, 1939. 18(4): p. 373-379.
16. Oen, K.T., et al., Attitudes and expectations of treating deep caries: a PEARL Network survey. Gen Dent, 2007. 55(3): p. 197-203.
17. Foley, J., D. Evans, and A. Blackwell, Partial caries removal and cariostatic materials in carious primary molar teeth: a randomised controlled clinical trial. Br Dent J, 2004. 197(11): p. 697-701; discussion 689.
18. Ribeiro, C.C., et al., A clinical, radiographic, and scanning electron microscopic evaluation of adhesive restorations on carious dentin in primary teeth. Quintessence Int, 1999. 30(9): p. 591-9.
19. Leksell, E., et al., Pulp exposure after stepwise versus direct complete excavation of deep carious lesions in young posterior permanent teeth. Endod Dent Traumatol, 1996. 12(4): p. 192-6.
20. Magnusson, B.O. and S.O. Sundell, Stepwise excavation of deep carious lesions in primary molars. J Int Assoc Dent Child, 1977. 8(2): p. 36-40.
21. Thompson, V., et al., Treatment of deep carious lesions by complete excavation or partial removal: a critical review. J Am Dent Assoc, 2008. 139(6): p. 705-12.
22. Ricketts, D.N., et al., Complete or ultraconservative removal of decayed tissue in unfilled teeth. Cochrane Database Syst Rev, 2006(3): p. Cd003808.
23. Al-Hiyasat, A.S., K.M. Barrieshi-Nusair, and M.A. Al-Omari, The radiographic outcomes of direct pulp-capping procedures performed by dental students: a retrospective study. J Am Dent Assoc, 2006. 137(12): p. 1699-705.
24. Baume, L.J. and J. Holz, Long term clinical assessment of direct pulp capping. Int Dent J, 1981. 31(4): p. 251-60.
25. Bergenholtz, G. and J. Lindhe, Effect of soluble plaque factors on inflammatory reactions in the dental pulp. Scand J Dent Res, 1975. 83(3): p. 153-8.
26. Watts, A. and R.C. Paterson, Bacterial contamination as a factor influencing the toxicity of materials to the exposed dental pulp. Oral Surg Oral Med Oral Pathol, 1987. 64(4): p. 466-74.
27. Murray, P.E., et al., Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit Rev Oral Biol Med, 2002. 13(6): p. 509-20.
28. Torabinejad, M., et al., Outcomes of nonsurgical retreatment and endodontic surgery: a systematic review. J Endod, 2009. 35(7): p. 930-7.
29. Cox, C.F., et al., Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent, 1996. 21(1): p. 4-11.
30. Markowitz, K., et al., Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg Oral Med Oral Pathol, 1992. 73(6): p. 729-37.
31. Meryon, S.D. and K.J. Jakeman, The effects in vitro of zinc released from dental restorative materials. Int Endod J, 1985. 18(3): p. 191-8.
32. Maddalone, M. and M. Gagliani, Periapical endodontic surgery: a 3-year follow-up study. Int Endod J, 2003. 36(3): p. 193-8.
33. Rubinstein, R.A. and S. Kim, Long-term follow-up of cases considered healed one year after apical microsurgery. J Endod, 2002. 28(5): p. 378-83.
34. Chong, B.S. and T.R. Pitt Ford, Root-end filling materials: rationale and tissue response. Endodontic Topics, 2005. 11(1): p. 114-130.
35. De Bruyne, M.A. and R.J. De Moor, The use of glass ionomer cements in both conventional and surgical endodontics. Int Endod J, 2004. 37(2): p. 91-104.
36. Inokoshi, S., M. Iwaku, and T. Fusayama, Pulpal response to a new adhesive restorative resin. J Dent Res, 1982. 61(8): p. 1014-9.
37. White, K.C., et al., Pulpal response to adhesive resin systems applied to acid-etched vital dentin: damp versus dry primer application. Quintessence Int, 1994. 25(4): p. 259-68.
38. Olmez, A., et al., A histopathologic study of direct pulp-capping with adhesive resins. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998. 86(1): p. 98-103.
39. Pameijer, C.H. and H.R. Stanley, The disastrous effects of the 'total etch' technique in vital pulp capping in primates. Am J Dent, 1998. 11 Spec No: p. S45-54.
40. Hebling, J., E.M. Giro, and C.A. Costa, Biocompatibility of an adhesive system applied to exposed human dental pulp. J Endod, 1999. 25(10): p. 676-82.
41. Stanley, H.R., Pulp capping: conserving the dental pulp--can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol, 1989. 68(5): p. 628-39.
42. Lee, S.J., M. Monsef, and M. Torabinejad, Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod, 1993. 19(11): p. 541-4.
43. Castellucci, A., The use of mineral trioxide aggregate to repair iatrogenic perforations. Dent Today, 2008. 27(9): p. 74, 76, 78-80; quiz 81.
44. Kao, C.T., et al., Properties of an accelerated mineral trioxide aggregate-like root-end filling material. J Endod, 2009. 35(2): p. 239-42.
45. Lee, Y., Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials, 2004. 25(5): p. 787-793.
46. Oguntebi, B.R., et al., Quantitative assessment of dentin bridge formation following pulp-capping in miniature swine. J Endod, 1995. 21(2): p. 79-82.
47. Sasaki, T. and H. Kawamata-Kido, Providing an environment for reparative dentine induction in amputated rat molar pulp by high molecular-weight hyaluronic acid. Arch Oral Biol, 1995. 40(3): p. 209-19.
48. Yoshiba, K., et al., Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide. J Dent Res, 1996. 75(8): p. 1590-7.
49. Attalla, M.N. and A.A. Noujaim, Role of calcium hydroxide in the formation of reparative dentine. J Can Dent Assoc (Tor), 1969. 35(5): p. 267-9.
50. Holland, R., et al., Histochemical analysis of the dogs' dental pulp after pulp capping with calcium, barium, and strontium hydroxides. J Endod, 1982. 8(10): p. 444-7.
51. Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510.
52. Hulbert, S.F., et al., History of bioceramics. Ceramics International, 1982. 8(4): p. 131-140.
53. Neo, M., et al., A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. Journal of Biomedical Materials Research, 1992. 26(11): p. 1419-1432.
54. Langstaff, S., et al., Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials, 2001. 22(2): p. 135-50.
55. Aoki, H., Medical applications of hydroxyapatite. 1994: Ishiyaku EuroAmerica, Incorporated.
56. Chow, L.C., Next generation calcium phosphate-based biomaterials. Dent Mater J, 2009. 28(1): p. 1-10.
57. Bohner, M., U. Gbureck, and J.E. Barralet, Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials, 2005. 26(33): p. 6423-9.
58. Intini, G., et al., Engineering a Bioactive Matrix by Modifications of Calcium Sulfate. Tissue Engineering, 2002. 8(6).
59. Coetzee, A.S., Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol, 1980. 106(7): p. 405-9.
60. Lieberman, J.R., A. Daluiski, and T.A. Einhorn, The role of growth factors in the repair of bone biology and clinical applications. The Journal of Bone & Joint Surgery, 2002. 84(6): p. 1032-1044.
61. Zhang, W., X.F. Walboomers, and J.A. Jansen, The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-β1. Journal of Biomedical Materials Research Part A, 2008. 85A(2): p. 439-444.
62. Dobie, K., et al., Effects of Alginate Hydrogels and TGF-β1 on Human Dental Pulp Repair In Vitro. Connective Tissue Research, 2002. 43(2-3): p. 387-390.
63. Sloan, A.J., R.B. Rutherford, and A.J. Smith, Stimulation of the rat dentine–pulp complex by bone morphogenetic protein-7 in vitro. Archives of Oral Biology, 2000. 45(2): p. 173-177.
64. Lovschall, H., O. Fejerskov, and A. Flyvbjerg, Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars. Advances in Dental Research, 2001. 15(1): p. 108-112.
65. Tziafas, D., et al., Effects of recombinant basic fibroblast growth factor, insulin-like growth factor-II and transforming growth factor-β1 on dog dental pulp cells in vivo. Archives of Oral Biology, 1998. 43(6): p. 431-444.
66. Rutherford, R.B., et al., Induction of reparative dentine formation in monkeys by recombinant human osteogenic Protein-1. Archives of Oral Biology, 1993. 38(7): p. 571-576.
67. Rutherford, R.B., et al., The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Archives of Oral Biology, 1994. 39(10): p. 833-838.
68. Melin, M., et al., Effects of TGFβ 1 on Dental Pulp Cells in Cultured Human Tooth Slices. Journal of Dental Research, 2000. 79(9): p. 1689-1696.
69. D'Souza, R., et al., TGF-beta1 is essential for the homeostasis of the dentin-pulp complex. European journal of oral sciences, 1998. 106: p. 185.
70. Tziafas, D., et al., Dentin Regeneration in Vital Pulp Therapy: Design Principales. Advances in dental research, 2001. 15(1): p. 96-100.
71. Pelton, R.W., et al., Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. The Journal of cell biology, 1991. 115(4): p. 1091-1105.
72. D'souza, R., et al., Temporal and spatial patterns of transforming growth factor-β1 expression in developing rat molars. Archives of oral biology, 1990. 35(12): p. 957-965.
73. Vaahtokari, A., S. Vainio, and I. Thesleff, Associations between transforming growth factor beta 1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development, 1991. 113(3): p. 985-994.
74. Sloan, A., J. Matthews, and A. Smith, TGF-β receptor expression in human odontoblasts and pulpal cells. The Histochemical Journal, 1999. 31(8): p. 565-569.
75. Finkelman, R.D., et al., Quantitation of growth factors IGF‐I, SGF/IGF‐II, and TGF‐β in human dentin. Journal of Bone and Mineral Research, 1990. 5(7): p. 717-723.
76. Zhao, S., et al., Ultrastructural Localisation of TGF-β Exposure in Dentine by Chemical Treatment. The Histochemical Journal, 2000. 32(8): p. 489-494.
77. Shiba, H., et al., Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. Journal of cellular physiology, 1998. 174(2): p. 194-205.
78. Nakashima, M., The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Archives of Oral Biology, 1992. 37(3): p. 231-236.
79. Shirakawa, M., et al., Transforming Growth Factor-beta-1 Reduces Alkaline Phosphatase mRNA and Activity and Stimulates Cell Proliferation in Cultures of Human Pulp Cells. Journal of Dental Research, 1994. 73(9): p. 1509-1514.
80. Liang, R.-F., S. Nishimura, and S. Sato, Effects of epidermal growth factor and transforming growth factor-β on insulin-induced differentiation in rat dental pulp cells. Archives of oral biology, 1992. 37(10): p. 789-795.
81. Hu, C.C., et al., Reparative dentin formation in rat molars after direct pulp capping with growth factors. Journal of Endodontics, 1998. 24(11): p. 744-751.
82. Nishikawa, H., et al., Sulfated glycosaminoglycan synthesis and its regulation by transforming growth factor-β in rat clonal dental pulp cells. Journal of Endodontics, 2000. 26(3): p. 169-171.
83. Magne, D., et al., Development of an odontoblast in vitro model to study dentin mineralization. Connective tissue research, 2004. 45(2): p. 101-108.
84. Dijke, P.t. and C.S. Hill, New insights into TGF-β–Smad signalling. Trends in biochemical sciences, 2004. 29(5): p. 265-273.
85. Gonzales, D., K. Fan, and M. Sevoian, Synthesis and swelling characterizations of a poly(gamma-glutamic acid) hydrogel. Journal of Polymer Science Part A: Polymer Chemistry, 1996. 34(10): p. 2019-2027.
86. Iwata, H., et al., A novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly(L-glutamic acid):: Part 1. Synthesis of activated poly(L-glutamic acid) and its gelation with gelatin. Biomaterials, 1998. 19(20): p. 1869-1876.
87. Hsu, S.-h. and C.-H. Lin, The properties of gelatin–poly (γ-glutamic acid) hydrogels as biological glues. Biorheology, 2007. 44(1): p. 17-28.
88. Kuo, Y.-C. and H.-W. Yu, Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug. Colloids and Surfaces B: Biointerfaces, 2011. 88(1): p. 158-164.
89. Wu, C. and C.-Y. Yan, Studies of the Swelling and Drying Kinetics of Thin Gelatin Gel Films by in situ Interferometry. Macromolecules, 1994. 27(16): p. 4516-4520.
90. Ramaraj, B. and G. Radhakrishnan, Interpenetrating hydrogel networks based on gelatin and polyacrylamide: Synthesis, swelling, and drug release analysis. Journal of Applied Polymer Science, 1994. 52(7): p. 837-846.
91. Bosch, E.v.d. and C. Gielens, Gelatin degradation at elevated temperature. International Journal of Biological Macromolecules, 2003. 32: p. 129-138.
92. Pena, C., et al., Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 2010. 101(17): p. 6836-6842.
93. Young, S., et al., Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release, 2005. 109(1–3): p. 256-274.
94. Tabata, Y. and Y. Ikada, Protein release from gelatin matrices. Advanced Drug Delivery Reviews, 1998. 31(3): p. 287-301.
95. Vallet-Regi, M. and E. Ruiz-Hernandez, Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater, 2011. 23(44): p. 5177-218.
96. Arenholt-Bindslev, D. and H. Bleeg, Characterization of two types of human oral fibroblast with a potential application to cellular toxicity studies: tooth pulp fibroblasts and buccal mucosa fibroblasts. Int Endod J, 1990. 23(2): p. 84-91.
97. Consiglio, R., et al., Inhibition by glass-ionomer cements of protein synthesis by human gingival fibroblasts in continuous culture. Arch Oral Biol, 1998. 43(1): p. 65-71.
98. Hanks, C.T., M. Anderson, and R.G. Craig, Cytotoxic effects of dental cements on two cell culture systems. J Oral Pathol, 1981. 10(2): p. 101-12.
99. Kokubo, T. and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-2915.
100. Mestrener, S.R., R. Holland, and E. Dezan, Influence of age on the behavior of dental pulp of dog teeth after capping with an adhesive system or calcium hydroxide. Dental Traumatology, 2003. 19(5): p. 255-261.
101. Accorinte, M.d.L.R., et al., Evaluation of Mineral Trioxide Aggregate and Calcium Hydroxide Cement as Pulp-capping Agents in Human Teeth. Journal of Endodontics, 2008. 34(1): p. 1-6.
102. Villar, J., et al., Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Critical Care Medicine, 1994. 22(6).
103. Nilsson, M., et al., Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatite cement. J Mater Sci Mater Med, 2003. 14(5): p. 399-404.
104. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 1983. 65(1): p. 55-63.
105. Torabinejad, M., et al., Physical and chemical properties of a new root-end filling material. Journal of Endodontics, 1995. 21(7): p. 349-353.
106. Chen, C.-C., et al., Properties of anti-washout-type calcium silicate bone cements containing gelatin. Journal of Materials Science: Materials in Medicine, 2010. 21(4): p. 1057-1068.
107. Chen, C.-C., W.-C. Wang, and S.-J. Ding, In vitro physiochemical properties of a biomimetic gelatin/chitosan oligosaccharide/calcium silicate cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 95B(2): p. 456-465.
108. Hsieh, C.-Y., et al., Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials, 2005. 26(28): p. 5617-5623.
109. Ledezma-Perez, A.S., et al., Cement formation by microbial poly(γ-glutamic acid) and fluoroalumino-silicate glass. Materials Letters, 2005. 59(24–25): p. 3188-3191.
110. Gopferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-114.
111. Agell, N., et al., Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signal, 2002. 14(8): p. 649-54.
112. Munaron, L., S. Antoniotti, and D. Lovisolo, Intracellular calcium signals and control of cell proliferation: how many mechanisms? J Cell Mol Med, 2004. 8(2): p. 161-8.
113. Tay, F.R., et al., Calcium Phosphate Phase Transformation Produced by the Interaction of the Portland Cement Component of White Mineral Trioxide Aggregate with a Phosphate-containing Fluid. Journal of Endodontics, 2007. 33(11): p. 1347-1351.
114. Budiraharjo, R., et al., Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. International Endodontic Journal, 2010. 43(10): p. 930-939.
115. Gandolfi, M.G., et al., Apatite-forming ability (bioactivity) of ProRoot MTA. International Endodontic Journal, 2010. 43(10): p. 917-929.
116. Oliveira, A.L., P.B. Malafaya, and R.L. Reis, Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 2003. 24(15): p. 2575-2584.
117. Samachson, J., Basic requirements for calcification. 1969.
118. Engqvist, H., et al., In vivo Bioactivity of a Mineral Based Orthopaedic Biocement. Trends Biomater. Artif. Organs, 2005. 19(1): p. 27-32.
119. Miyamoto, Y., et al., Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res, 1997. 37(4): p. 457-64.
120. Shih, I.-L. and Y.-T. Van, The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 2001. 79(3): p. 207-225.
121. Matsusaki, M., et al., Novel Functional Biodegradable Polymer:  Synthesis and Anticoagulant Activity of Poly(γ-Glutamic Acid)sulfonate (γ-PGA-sulfonate). Bioconjugate Chemistry, 2001. 13(1): p. 23-28.
122. Chiu, Y.T., et al., Encapsulation of Lycopene Extract from Tomato Pulp Waste with Gelatin and Poly(γ-glutamic acid) as Carrier. Journal of Agricultural and Food Chemistry, 2007. 55(13): p. 5123-5130.
123. Hajiali, H., et al., Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomedicine, 2011. 6: p. 2133-41.
124. Luisi, S.B., et al., Behavior of Human Dental Pulp Cells Exposed to Transforming Growth Factor-Beta1 and Acidic Fibroblast Growth Factor in Culture. Journal of Endodontics, 2007. 33(7): p. 833-835.
125. Cox, C., et al., Tunnel defects in dentin bridges: their formation following direct pulp capping. Operative dentistry, 1996. 21(1): p. 4.
126. Okamoto, H., et al., The Usefulness of New Hydroxyapatite as a Pulp Capping Agent in Rat Molars. International Journal of Oral-Medical Sciences, 2006. 5(1): p. 50-56.
127. Al-Hezaimi, K., et al., Histomorphometric and Micro–computed Tomography Analysis of Pulpal Response to Three Different Pulp Capping Materials. Journal of Endodontics, 2011. 37(4): p. 507-512.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18605-
dc.description.abstract活髓治療的目的在使牙髓保持活性並形成修復性牙本質,維持牙齒正常生理結構及功能。活髓治療發展至今在臨床上仍然沒有理想之材料。磷酸鈣骨水泥(CPCs)在牙科的應用主要是作為骨頭缺損的修補材料,在牙周病、顱顏手術、外傷修復、齒顎矯正等領域都有相關應用。然而,CPCs的硬化時間過長(30-60分)、材料的低機械強度造成易崩解等性質仍舊限制了其在臨床應用的發展。CPCs用於活髓治療需改善初期硬化時間太長的缺點,因此本研究改善CPCs製程使有效縮短初期硬化時間並發展可調控硬化時間之新型磷酸鈣-高分子材料應用於活髓治療。
本研究目的為改良磷酸鈣骨水泥(CPCs)生醫陶瓷材料應用於活髓治療,藉由結合磷酸鈣骨水泥(CSC)發展改良適合活髓治療可引導牙髓組織再生之新型磷酸鈣複合生醫陶瓷材料,並以聚麩胺酸-明膠結合生長因子TGF-β1添加至磷酸鈣-硫酸鈣雙相材料系統,探討與細胞組織交互作用的機轉,以及其誘導牙本質牙髓組織再生的調控模式。本研究分為四大部分,第一部分為材料物理化學性質分析包含晶相結構、固化時間、溫度變化、機械性質、降解測試與鈣離子釋放。第二部分為生物活性指標測試,以SEM與XRD鑑定水合產物結構以及所發展之生醫材料對細胞鈣化 (礦化) 的影響。第三部分為生物相容性分析,以ISO-10993標準評估細胞存活率、細胞毒性。第四部份為建立大動物實驗模型,以犬隻評估所研發之生醫材料與市售材料於牙髓組織再生之差異。
研究結果顯示,藉由添加CSC改善CPC硬化時間長的難以單獨應用於活髓治療缺點,其硬化時間由一個小時降為十五分,符合臨床操作性質,此材料具有良好的生物相容性。此外,所研發之磷酸鈣/硫酸鈣雙相材料能誘導牙本質橋的形成,而以聚麩胺酸-明膠結合生長因子TGF-β1添加至磷酸鈣-硫酸鈣雙相材料系統在一個月即能誘導完整連續之本質橋生成。
zh_TW
dc.description.abstractVital pulp therapy is to preserve the pulp vitality as well as to form the reparative dentin for maintaining the normal physical structures and functions of teeth. After years of research and development of the biomaterials, not an ideal material for vital pulp therapy
Bioactive calcium phosphate cements (CPC) have been widely used for repairing bone defects because of their excellent biocompatibility and bioactivity. However, the drawbacks of poor handling properties, low initial mechanical strength, and relatively long setting time limit its application in vital pulp therapy. We synthesized and evaluated the feasibility of biphasic calcium phosphate/sulfate cements for vital pulp therapy. CPC cements were mixed with various amounts of calcium sulfate cements (CSC) to improve the physical, chemical, and mechanical properties. Poly-γ-glumatic acid (γ-PGA) is suitable candidate for drug carrier. And TGF-β1 is well-known for its ability to induce differentiation of dental pulp. The CPC-CSC biphasic biomaterial combinedγ-PGA with TGF-β1 for vital pulp therapy. The purpose of this study is to understand the mechanisms underlying pulp-dentin regeneration and test the efficacy in vivo of our materials for vital pulp therapy. We examined the biphasic biomaterials to study its physicochemical properties, bioactivity, biocompatibility and animal study. The results shows that the initial setting time of CPC-CSH biphasic cement exhibited substantial improvement compared with CPC. The cell viability and cytotoxicity exhibited no harm to the dental pulp cell and animal study presents this CPC-CSH biphasic cement can induce calcified tissue. Based on the results, the developed CPC/CSH biphasic cement has great potential as a material for vital pulp therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:14:29Z (GMT). No. of bitstreams: 1
ntu-103-D96422005-1.pdf: 13481010 bytes, checksum: 4709aee31f95edc8b73331e2401ab77f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要------------------------------------------------------------------------------------------i
英文摘要-----------------------------------------------------------------------------------------ii
第一章 導論-------------------------------------------------------------------------------------1
第二章 研究背景與文獻回顧----------------------------------------------------------------2
2.1 保存牙髓活性於牙科醫療之重要性------------------------------------------------2
2.1.1 牙齒之功能與構造------------------------------------------------------------------2
2.1.2 引導牙髓組織再生於臨床治療之意義------------------------------------------2
2.2 活髓治療 (Vital Pulp Therapy)-------------------------------------------------------3
2.2.1活髓治療的目的--------------------------------------------------------------------3
2.2.2 間接覆髓 (Indirect Pulp Capping)----------------------------------------------4
2.2.3 直接覆髓 (Direct Pulp Capping)------------------------------------------------5
2.2.3 斷髓治療 (Pulpotomy)-----------------------------------------------------------5
2.3 現今材料應用於牙髓組織再生之缺點與限制------------------------------------6
2.3.1 Zinc Oxide Eugenol (ZOE)--------------------------------------------------------7
2.3.2 Glass Ionomer (GI)/Resin-Modifed Glass Ionomer (RMGI)-----------------7
2.3.3 Adhesive Systems-------------------------------------------------------------------8
2.3.4 Calcium Hydroxide-----------------------------------------------------------------9
2.3.5 Mineral Trioxide Aggregate (MTA)----------------------------------------------9
2.4 生醫材料誘導牙本質-牙髓組織再生的機轉尚未明瞭-------------------------10
2.5 磷酸/硫酸鈣雙相 (Biphasic) 生醫陶瓷於活髓治療之應用潛力------------10
2.5.1 生醫陶瓷---------------------------------------------------------------------------10
2.5.2 近生物惰性陶瓷 (nearly inert bioceramics)---------------------------------11
2.5.3 生物活性陶瓷 (surface-active bioceramics)---------------------------------12
2.5.4 生物吸收性陶瓷 (resorbable bioceramics)----------------------------------12
2.5.5 磷酸鈣陶瓷與分類--------------------------------------------------------------12
2.5.6 磷酸鈣骨水泥--------------------------------------------------------------------13
2.5.7硫酸鈣骨水泥---------------------------------------------------------------------15
2.6 生長因子對誘導牙髓組織再生扮演重要的角色-------------------------------16
2.6.1 Bone Morphogenetic Proteins (BMPs)----------------------------------------16
2.6.2 TGF-β1於牙髓組織再生之應用潛力---------------------------------------17
2.6.3 以聚麩胺酸-明膠 (γ-PGA/Gelatin) 載體攜帶生長因子------------------17
2.7 生醫材料結合生長因子應用於牙髓組織再生之優勢-------------------------18
2.8 生物相容性對生醫材料研發過程是重要的一環-------------------------------21
第三章 研究目的-----------------------------------------------------------------------------25
第四章 材料與實驗方法--------------------------------------------------------------------26
4.1 磷酸鈣/硫酸鈣雙相材料之備製(CPC-CSC)-------------------------------------27
4.1.1 磷酸鈣骨水泥之備製 (Calcium Phosphate Cements, CPCs)-------------27
4.1.2 磷酸/硫酸鈣雙相材料備製(CPC-CSC)--------------------------------------27
4.1.3 磷酸/硫酸鈣雙相材料添加γ-PGA/Gelating水膠------------------------28
4.2 材料物化性質分析 (Physicochemical Properties)------------------------------28
4.2.1 X光繞射分析(X-ray Diffraction analysis)-------------------------------28
4.2.2 傅立葉轉換紅外線光譜 (FT-IR)---------------------------------------------29
4.2.3硬化時間 (Setting Time)--------------------------------------------------------29
4.2.4 量測材料硬化過程之溫度變化-----------------------------------------------29
4.2.5 酸鹼值評估 (pH Variation)----------------------------------------------------30
4.2.6 抗壓強度測試 (Compressive Strength)--------------------------------------30
4.2.7降解測試---------------------------------------------------------------------------31
4.2.8 鈣離子釋放-----------------------------------------------------------------------31
4.3 體外生物活性測試--------------------------------------------------------------------31
4.3.1 模擬體液溶液SBF之備製-----------------------------------------------------31
4.3.2 表面型態分析-掃描式電子顯微鏡(SEM)觀察-----------------------------33
4.3.3 X光繞射分析(X-ray Diffraction analysis)--------------------------------34
4.4 生物相容性評估-----------------------------------------------------------------------34
4.4.1 人類牙髓細胞 (human pulp cell)之初級培養(primary culture)----------35
4.4.2 萃取液備製-----------------------------------------------------------------------36
4.4.3 細胞存活率實驗(cell viability assay)-------------------------------------37
4.4.4 細胞毒性測試(Lactate Dehydrogenase, LDH)-------------------------------37
4.4.5 生長因子釋放測試--------------------------------------------------------------38
4.5 細胞礦化表現--------------------------------------------------------------------------39
4.5.1 鹼性磷酸酶(Alkaline phosphatase, ALPase)定性染色分析---------------39
4.5.2 細胞基質礦化小體染色(Alizarin Red S staining, ARS)-------------------40
4.5 動物實驗--------------------------------------------------------------------------------40
4.5.1 動物模式---------------------------------------------------------------------------40
4.5.2 電腦斷層(μ-CT)照射-----------------------------------------------------------45
4.5.3 組織學切片標本備置------------------------------------------------------------45
4.5.4 生醫材料與活體組織之形態影響及組織發炎之狀況--------------------45
4.5.5 評估牙髓-牙本質硬組織之生成-----------------------------------------------46
4.6 數據統計分析--------------------------------------------------------------------------47
第五章 結果與討論---------------------------------------------------------------------------48
5.1 CSC含量對CPC-CSC雙相材料的影響------------------------------------------48
5.1.1 XRD繞射分析--------------------------------------------------------------------49
5.1.2 Setting Time-----------------------------------------------------------------------50
5.1.3材料硬化過程之溫度變化------------------------------------------------------51
5.1.4 酸鹼值(pH)變化------------------------------------------------------------------51
5.1.5 機械性質---------------------------------------------------------------------------52
5.1.6材料降解性測試-------------------------------------------------------------------55
5.1.7 SEM 觀察材料水合後之顯微結構--------------------------------------------57
5.1.8 生物相容性------------------------------------------------------------------------59
5.2 含γ-PGA/Gelatin水膠(Gel)之CPC-CSC雙相材料-物理化學性質分析---61
5.2.1 硬化時間---------------------------------------------------------------------------62
5.2.2 水粉比(L/P)對硬化時間之影響-----------------------------------------------63
5.2.3 材料硬化過程之溫度變化------------------------------------------------------64
5.2.4 酸鹼值變化------------------------------------------------------------------------65
5.2.5 機械性質-抗壓強度--------------------------------------------------------------66
5.2.6 材料降解性測試------------------------------------------------------------------67
5.2.7 鈣/磷離子釋放量-----------------------------------------------------------------70
5.3生物活性評估 (Bioactivity)----------------------------------------------------------71
5.3.1 SEM觀察水合產物之表面顯微結構------------------------------------------71
5.3.2水合產物結構分析-XRD--------------------------------------------------------84
5.3.3 氫氧基磷灰石(HAp)轉化率----------------------------------------------------87
5.3.4 生長因子釋放測試---------------------------------------------------------------88
5.4 生物相容性與細胞礦化--------------------------------------------------------------89
5.4.1 Cell Viability – WST-1------------------------------------------------------------89
5.4.2 Cytotoxicity Assay – LDH--------------------------------------------------------90
5.4.3 live and dead stain -----------------------------------------------------------------91
5.4.4鹼性磷酸酶(Alkaline phosphatase, ALPase)定性染色分析----------------94
5.5 動物實驗(Animal Study)-------------------------------------------------------------95
5.5.1電腦斷層掃描(μ-CT)影像分析-------------------------------------------------95
第六章 結論----------------------------------------------------------------------------------101
參考文獻---------------------------------------------------------------------------------------102
圖目錄
圖2-1含TGF-β1之CPC-CSC雙相複合生醫材料引導牙髓組織再生之概念圖------------------------------------------------------------------------------------------------------20
圖4-1 實驗流程圖----------------------------------------------------------------------------26
圖4-2 狗之覆髓過程。(a) 手術部位注射局部射麻藥 (b) 以高速磨牙手機於頰側齒頸部區域車磨第五級窩洞 (c) 使牙髓暴露約0.5~1 mm (d) 已消毒過的小棉球止血 (e) 放置覆髓材料於窩洞內 (f) 填入玻璃離子體封閉窩洞-------43
圖4-3 (a) 定位頸內動脈 (b) 定位頸外靜脈 (c) 靜脈留置針放置於頸內動脈--44
圖5-1-1 1400度高溫燒結焠火後TTCP之XRD 圖譜--------------------------------49
圖5-1-2 CSC比例對CPC-CSC雙相材料初始與最終硬化時間之影響------------50
圖5-1-3 各組材料水合硬化之溫度變化--------------------------------------------------51
圖5-1-4 材料於PBS中pH 值之變化----------------------------------------------------52
圖5-1-5 (A) CSC含量對CPC機械性質-抗壓強度之影響 (B) 各組材料浸泡於SBF隨時間變化之直徑抗拉強度----------------------------------------------------------54
圖5-1-6 (A) 材料浸泡於SBF 二十八天之重量損失率 (B) 材料隨時間之孔隙率變化-------------------------------------------------------------------------------------------56
圖5-1-7 SEM觀察各組材料浸泡於SBF 二十八天後之顯微結構圖 (A) 3CPC/CSC; (B) CPC/CSC; (C) CPC/3CSC------------------------------------------------58
圖5-1-8 生物相容性測試 (A) LDH細胞毒性 (B) 以WST-1評估細胞存活率--------------------------------------------------------------------------------------------------------60
圖5-2-1 Gel對各組材料硬化時間之影響------------------------------------------------63
圖5-2-2不同水粉比(L/P)對材料硬化時間之影響--------------------------------------64
圖5-2-3 各組材料浸泡於PBS一天之pH值變化--------------------------------------66
圖5-2-4 Gel對材料機械性質-抗壓強度之影響-----------------------------------------67
圖5-2-6-1表面裂解圖------------------------------------------------------------------------68
圖5-2-6-2 各組材料之降解程度-重量損失率與視孔隙率 (A) 7CPC/3CSC/Gel; (B) 6CPC/4CSC/Gel---------------------------------------------------------------------------69
圖5-2-7 6CPC/4CSC與6CPC/4CSC/Gel 之鈣離子與磷離子釋放量--------------71
圖5-3-1-1 SEM觀察7CPC/3CSC/Gel浸泡於SBF不同時間點之水合產物表面顯微結構圖 (A)第一天; (B)第三天; (C)第七天; (D)第十四天; (E)第二十八天----------------------------------------------------------------------------------------------------------75
圖 5-3-1-2 SEM觀察6CPC/4CSC/Gel浸泡於SBF不同時間點之水合產物表面顯微結構圖 (A)第一天; (B)5000x; (C)第三天; (D)5000x; (E)第七天; (F)5000x; (G)第十四天; (H)5000x; (I)第二十八天(J)5000x---------------------------------------------80
圖 5-3-1-3 SEM觀察MTA浸泡於SBF不同時間點之水合產物表面顯微結構圖 (A)四個小時; (B)第一天; (C)第三天; (D)第七天; (E)第十四天; (F)第二十八天----------------------------------------------------------------------------------------------------------83
圖5-3-2-1 7CPC/3CSC、7CPC/3CSC/Gel、6CPC/4CSC、6CPC/4CSC/Gel、CPC/CSC與CPC/CSC/Gel水合硬化後之XRD晶相圖譜-----------------------------------------85
圖 5-3-3-2 7CPC/3CSC/Gel 浸泡於SBF水合後之XRD產物晶相分析-----------86
圖 5-3-3-3 6CPC/4CSC/Gel 浸泡於SBF水合後之XRD產物晶相分析-----------87
圖5-3-4 TGF-β1於材料6CPC/4CSC與6CPC/4CSC/Gel中不同時間點之釋放-------------------------------------------------------------------------------------------------------89
圖5-4-1 各組材料以WST-1測試細胞存活率-------------------------------------------90
圖5-4-2 材料對牙髓細胞之LDH細胞毒性測試一天與三天結果------------------91
圖5-4-3-1 材料對牙髓細胞之live and dead stain 作用一天之影像圖--------------92
圖5-4-3-2 材料對牙髓細胞之live and dead stain 作用三天之影像圖--------------93
圖 5-4-4 鹼性磷酸酶定性染色-------------------------------------------------------------94
圖5-5-1 動物實驗μ-CT 影像(A) 6CPC/4CSC活髓治療一個月; (B) 圖圖圖6CPC/4CSC/Gel + TGF-β1活髓治療一個月; (C)氫氧化鈣活髓治療一個月; (D) MTA活髓治療一個月; (E) 6CPC/4CSC活髓治療二個月; (F) 6CPC/4CSC/Gel + TGF-β1活髓治療二個月; (G) 氫氧化鈣活髓治療二個月; (H) MTA活髓治療二個月---------------------------------------------------------------------------------------------100
 
表次
表2-1 不同鈣磷比之磷酸鈣陶瓷及分類-------------------------------------------------13
表2-2 市售常見磷酸鈣骨水泥系統-------------------------------------------------------15
表4-1 SBF成分表----------------------------------------------------------------------------33
表4-2 人類血漿與SBF所含離子濃度---------------------------------------------------33
表4-3 組織學評評分標準-------------------------------------------------------------------46
表4-4 Hard Tissue Bridge生成評估表----------------------------------------------------47
表5-1 不同水膠比例之固化時間----------------------------------------------------------47
表5-2 各組材料硬化過程中之溫度差----------------------------------------------------62
表5-3 各晶相之JCPDF標準圖譜,繞射平面強度與角度表------------------------65
表5-4 μ-CT 影像硬組織生成評估-----------------------------------------------------100
dc.language.isozh-TW
dc.title研發含TGF-β1之磷酸鈣/硫酸鈣雙相水泥於活髓治療之研究 - 材料物化性質、生物活性、生物相容性及動物實驗zh_TW
dc.titleDevelopment of Calcium Phosphate/Calcium Sulfate Biphasic Cements with TGF-β1 for Vital Pulp Therapy - Physicochemical Properties, Bioactivity, Biocompatibility and Animal Studyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.coadvisor林?輝
dc.contributor.oralexamcommittee鄭景暉,章浩宏,姜昱至,林弘萍,鄧麗珍
dc.subject.keyword磷酸鈣骨水泥,硫酸鈣,活髓治療,生物相容性,TGF-β1,zh_TW
dc.subject.keywordcalcium phosphate cements,calcium sulfate,vital pulp therapy,TGF-β1,en
dc.relation.page110
dc.rights.note未授權
dc.date.accepted2014-08-13
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
13.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved