請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18562完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文(Chung-Wen Lan) | |
| dc.contributor.author | Chi-Chen Hsieh | en |
| dc.contributor.author | 謝志辰 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:11:54Z | - |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-16 | |
| dc.identifier.citation | [1] C.W. Lan, Grain control in directional solidification of photovoltaic silicon, The 5th International Workshop in Crystal Growth Technology, Berlin, June 26-30, (2011).
[2] C.W. Lan, W.C. Lan, T.F. Li, A. Yu, Y.M. Yang, C, Hsu, B. Hsu, A. Yang, Grain control in directional solidification of photovoltaic silicon. Journal of Crystal Growth 360 (2013) 68-75. [3] T. Taishi, T. Hoshikawa, M. Yamatani, K. Shirasawa, X. Huang, S. Uda, K. Hoshikawa, Influence of crystalline defects in Czochralski-grown Si multicrystal on minority carrier lifetime, Journal of Crystal Growth, 306 (2007) 452-457. [4] C.W. Lan, W.C. Lan, T.F. Lee, A. Yu, Y.M. Yang, W.C. Hsu, B. Hsu, A. Yang, Grain control in directional solidification of photovoltaic silicon, Journal of Crystal Growth, 360 (2012) 68-75. [5] Stokkan G., Relarionship between dislocation density and nucleation, Acta Materialia 2010; 58: 3223–3229 [6] J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa, M. Yamada, Correlation between residual strain and electrically active grain boundaries in multicrystalline silicon, Applied Physics Letters, 93 (2008) 112105-112103. [7] K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting, Acta Materialia, 54 (2006) 3191-3197. [8] C.W. Lan, Y. M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, Development of high quality multicrystalline silicon for photovoltaic industry, in The 27th European Photovoltaic Solar Energy Conference (27th EU PVSEC), Frankfurt, Sept. 24-28 (2012). [9] Y. M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, C. W. Lan, Development of high-performance multicrystalline silicon for photovoltaic industry, Prog. Photovolt: Res. Appl. (2013) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/pip.2437. [7] G. Stokkan, Y. Hub, O. Mjos, M. Juel, Study of evolution of dislocation clusters in high performance multicrystalline silicon, Solar Energy Materials and Solar Cells (2014), http://dx.doi.org/10.1016/j.solmat.2014.02.034. [10] D.Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang, Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification, Journal of Crystal Growth 386 (2014), 52–56. [11] G. Stokkan, Y. Hub, O. Mjos, M. Juel, Study of evolution of dislocation clusters in high performance multicrystalline silicon, Solar Energy Materials and Solar Cells (2014), http://dx.doi.org/10.1016/j.solmat.2014.02.034. [12] Y. T. Wong, C. Hsu, C. W. Lan, Development of grain structure of multi-crystalline silicon from random orientated seeds in directional solidification, Journal of Crystal Growth, 387 (2014) 10-15. [13] I. Brynjulfsen, L. Arnberg, Nucleation of silicon on Si3N4 coated SiO2, Journal of Crystal Growth, 331 (2011) 64-67. [14] H.W. Tsai, M. Yang, C. Hsu, C.W. Lan, Effect of crucible coating on the grain control of multi-crystalline silicon crystal growth, Journal of Crystal Growth, 363 (2013) 242-246 [15] T.F. Li, K.M. Yeh, W.C. Hsu, C.W. Lan, High-quality multi-crystalline silicon (mc-Si) grown by directional solidification using notched crucibles, Journal of Crystal Growth, 318 (2011) 219-223. [16] E. Olsen, E.J. Ovrelid, Silicon nitride coating and crucible - effects of using upgraded materials in the casting of multicrystalline silicon ingots, Prog Photovoltaics, 16 (2008) 93-100. [17] R. Kvande, L. Arnberg, C. Martin, Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells, Journal of Crystal Growth, 311 (2009) 765-768. [18] J. Degoulange, C. Martin, L. Arnberg, C. Ndzogha, E. Pihan, S. Dubois, Ready to use solar crucible: impact on multicrystalline ingot properties and cell performances, 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009. [19] T. Saito, A. Shimura, S. Ichikawa, A reusable mold in directional solidification for silicon solar-cells, Sol Energ Mater, 9 (1983) 337-345. [20] P. S. RAVISHANKAR, Liquid Encapsulated Bridgman Method for directional solidification of silicon using calcium chloride, Journal of Crystal Growth, 94 (1989) 62-68 [21] O. Minster, J. Granier, C. Potard, N. Eustathopoulos, molding and directional solidification of solar-grade silicon using an insulating molten-salt, Journal of Crystal Growth, 82 (1987) 155-161 [22] P. Prakash, P.K. Singh, S.N. Singh, R. Kishore, B.K. Das, Use of silicon oxynitride as a graphite mold releasing coating for the growth of shaped multicrystalline silicon-crystals, Journal of Crystal Growth, 144 (1994) 41-47. [23] C. P. Khattak, F. Schmid, Reusable crucible for silicon ingot growth, US Patent US 2004/0211496 A1. [24] S. Julsrud, T. L. Naas, Method and crucible for direct solidification of semiconductor grade multi-crystalline silicon ingot, International Patent WO 2007/148987 A1. [25] R. Roligheten, G. Rian, S. Julsrud, Reusable crucibles and method of manufacturing them, International Patent WO 2007/148986 A1. [26] C. Huguet, V. Brize, S. Bailly, H. Lignier, E. Flahaut, B. Drevet, D. Camel, N. Eustathopoulos, Releasing coatings for PV-Si processing by liquid routes: comparison between the Conventional and a high-purity coating, 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2011. [27] R. L. Hansen, L.E. Drafall, R.M. McCutchan, J.D. Holder, L.A. Allen, R.D. Shelley, Surface-treated crucibles for improved zero dislocation performance, US Patent No. 5,976,247, Nov., 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18562 | - |
| dc.description.abstract | 現在多晶矽長晶發展所謂高效多晶矽,據有多且小的初始晶粒,重要的是晶碇缺陷生成速率低,因此多晶矽品質大幅提高,太陽能電池轉換效率提高達18%。目前高效多晶矽生長主要是藉由底部未完全熔化之矽碎料作為成核層,使矽從此成核層成核長出晶碇。然而這種生產方式有嚴重問題存在。其一為成核層在坩堝邊緣和角落處容易熔化,熱場控制困難,造成產量下降。其二為底部未溶晶種區,會造成晶碇底部汙染,紅區變大,紅區是晶碇品質低的區域必須去除,因此同樣降低了多晶矽的產量。
為解決問題目前高效多晶矽問題,吾人朝兩方向進行。第一是找出更簡單成核方法取代目前以矽碎料成核層,關於新的成核方法,本論文第一個方法是利用坩堝底部凹槽圖騰作為自身成核晶種取代目前矽碎料成核層。本論文第二個成核方法是利用矽粉混氮化矽粉塗佈層,使底部晶粒均勻成核產生小晶粒。兩種方法皆不需要控制熱場,沒有角落晶種層熔化以及未熔區晶種汙染晶碇問題。在凹槽圖騰坩堝實驗中,底部晶粒小且均勻,晶向分布平均,伴隨39.9%的non-Σ晶界。在矽粉混氮化矽粉實驗中,我們共設計三個矽粉混氮化矽粉比例,三者從縱切片和底部橫切片晶粒照皆可以清楚看到控制區具有均勻小晶粒,其中在矽粉混氮化矽粉1:1實驗中,吾人可以在晶碇底部誘導出高達51.6%的non-Σ晶界。 第二個研究方向是解決晶碇底部紅區汙染問題,晶碇污染來源主要是坩堝和塗佈層,因此吾人解決之道為利用阻障層降低來自坩堝和塗佈層的汙染,本論文作為阻障層材料有聚矽氮烷以及氧化鋇,從少數載子壽命圖能看出具有阻障層區域晶碇底部紅區變小,汙染獲得明顯改善。 | zh_TW |
| dc.description.abstract | In the directional solidification gowth of multicrystalline silicon, grain control was crucial to ingpt’s quality and solar cell efficiency. Recently, the development of the high performance multi-crystalline silicon based on nucleation of small and uniform grains with dominant non-coherent grain boundaries had small propogation rate of dislocation. HP-MC Si had good and more uniform quality. However, there were some serious problems in HP-Mc Si lowering the yield in the production. One is the melting of seed layer near the edges and corners and the other is the back diffusion of impurities from the contaminated seeds. In thie paper, we proposed more simple way for nucleation and used diffusion barrier layer to lower the impuritied from crucible and coating.
For grian control, two methods, notch patterned crucible and silicon/silicon nitride mixed coating, were proposed. Both of them resolved the problems in HP-MC Si production. With these two methods, we can get small and uniform grains, more random orientation and high percentage of non-Σ grain boundary in the inicial stage. In this study, polysilazane and barium oxide coatings with different layer configurations were considered. With the diffusion barrier layer, the lifetime of the ingot was improved and the red zone was reduced. The wetting behaviors of these diffusion barriers in contact with silicon were also discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:11:54Z (GMT). No. of bitstreams: 1 ntu-103-R01524084-1.pdf: 14429336 bytes, checksum: 50c595b9de68f7d70a043d582891ecbe (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 1 Abstract 2 目錄 4 圖目錄 6 表目錄 10 第一章 緒論 11 1-1前言 11 第二章 文獻回顧 14 2-1高效多晶矽發展及晶粒控制 14 2-2 多晶矽汙染改善 23 第三章 實驗方法及實驗器材 27 3-1實驗藥品 27 3-1-1 矽晶生長使用藥品 27 3-1-2 矽晶化學處理藥品 28 3-1-3 矽晶清洗處理藥品 29 3-2實驗設備與器材 30 3-2-1多晶鑄造高溫爐(G1 scale) 30 3-2-2 多晶生長前後處設備 31 3-2-3 量測設備 35 3-3實驗設計 42 3-3-1成核層實驗 42 3-3-1-1凹槽圖騰實驗一(N1): 42 3-3-1-1凹槽圖騰實驗二: 44 3-3-1-3矽粉氮化矽粉成核層實驗 45 3-3-2阻障層實驗 46 3-3-2-1聚矽氮烷(Polysilazane)阻障層實驗 46 3-3-2-2氧化鋇阻障層在坩堝上實驗(氮化矽/氧化鋇/石英坩堝) 47 3-3-2-3氧化鋇阻障層在氮化矽層上實驗(氧化鋇/氮化矽/石英坩堝) 48 第四章 結果與討論 49 4-1凹槽圖騰實驗 49 4-1-1 凹槽圖騰實驗一(N1) 49 4-1-2 凹槽圖騰實驗二 53 4-1-3 兩次凹槽圖騰實驗成核及缺陷面積比較 63 4-2矽粉氮化矽粉塗佈層實驗 67 4-2-1 晶粒生長 67 4-2-2晶向及晶界分析 68 4-3阻障層實驗 72 4-3-1聚矽氮烷阻障層實驗: 72 4-3-2氧化鋇阻障層在坩堝上實驗: 75 4-3-3氧化鋇阻障層在氮化矽層上實驗: 76 第五章 結論 79 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.title | 太陽能多晶矽晶體生長的晶粒控制及汙染改善 | zh_TW |
| dc.title | Grain Control and Pollution Reduction of Multi-Crystalline Silicon Crystal Growth for Photovoltaic Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪儒生(Lu-Sheng Hong),徐文慶(Wen-Ching Hsu) | |
| dc.subject.keyword | 晶粒控制,晶粒競爭,垂直固化,多晶矽,太陽能電池, | zh_TW |
| dc.subject.keyword | grain control,grain competition,directional solidification,multicrystalline silicon,solar cell, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 14.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
