請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18529完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊顯(Chun-hsien Chen) | |
| dc.contributor.author | Hung-Jen Wu | en |
| dc.contributor.author | 吳弘仁 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:10:03Z | - |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-17 | |
| dc.identifier.citation | 第五章 參考文獻
(1) Moore, G. E. Electronics 1965, 38, 114-117. (2) Packan, P. A. Perspectives: Device Physics - Pushing the Limits. Science 1999, 285, 2079-2081. (3) Lundstrom, M. Moore's Law Forever? Science 2003, 299, 210-211. (4) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. A [2]Catenane-Based Solid State Electronically Reconfigurable Switch. Science 2000, 289, 1172-1175. (5) Tour, J. M. Molecular Electronics. Synthesis and Testing of Components. Acc. Chem. Res. 2000, 33, 791-804. (6) Forrest, S. R.; Thompson, M. E. Introduction: Organic Electronics and Optoelectronics. Chem. Rev. 2007, 107, 923-925. (7) Shirota, Y.; Kageyama, H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices. Chem. Rev. 2007, 107, 953-1010. (8) Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chem. Rev. 2007, 107, 1233-1271. (9) Mas-Torrent, M.; Rovira, C. Tetrathiafulvalene Derivatives for Organic Field Effect Transistors. J. Mater. Chem. 2006, 16, 433-436. (10) Miskiewicz, P.; Mas-Torrent, M.; Jung, J.; Kotarba, S.; Glowacki, I.; Gomar-Nadal, E.; Amabilino, D. B.; Veciana, J.; Krause, B.; Carbone, D.; Rovira, C.; Ulanski, J. Efficient High Area Ofets by Solution Based Processing of a Pi-Electron Rich Donor. Chem. Mater. 2006, 18, 4724-4729. (11) De Feyter, S.; De Schryver, F. C. Self-Assembly at the Liquid/Solid Interface: Stm Reveals. J. Phys. Chem. B 2005, 109, 4290-4302. (12) Kuhnle, A. Self-Assembly of Organic Molecules at Metal Surfaces. Curr. Opin. Colloid Interface Sci. 2009, 14, 157-168. (13) Yang, Y. L.; Wang, C. Solvent Effects on Two-Dimensional Molecular Self-Assemblies Investigated by Using Scanning Tunneling Microscopy. Curr. Opin. Colloid Interface Sci. 2009, 14, 135-147. (14) Barth, J. V.; Costantini, G.; Kern, K. Engineering Atomic and Molecular Nanostructures at Surfaces. Nature 2005, 437, 671-679. (15) Ruben, M. Squaring the Interface: 'Surface-Assisted' Coordination Chemistry. Angew. Chem. Int. Ed. 2005, 44, 1594-1596. (16) Elemans, J. A. A. W.; De Feyter, S. Structure and Function Revealed with Submolecular Resolution at the Liquid-Solid Interface. Soft Matter 2009, 5, 721-735. (17) Wan, L. J. Fabricating and Controlling Molecular Self-Organization at Solid Surfaces: Studies by Scanning Tunneling Microscopy. Acc. Chem. Res. 2006, 39, 334-342. (18) Li, S. S.; Yan, H. J.; Wan, L. J.; Yang, H. B.; Northrop, B. H.; Stang, P. J. Control of Supramolecular Rectangle Self-Assembly with a Molecular Template. J. Am. Chem. Soc. 2007, 129, 9268-9269. (19) Plass, K. E.; Engle, K. M.; Cychosz, K. A.; Matzger, A. J. Large-Periodicity Two-Dimensional Crystals by Cocrystallization. Nano Lett. 2006, 6, 1178-1183. (20) Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-Selective Fabrication of Two-Dimensional Fullerene Arrays by Using a Supramolecular Template at the Liquid-Solid Interface. Angew. Chem. Int. Ed. 2008, 47, 6717-6721. (21) Lei, S.; Surin, M.; Tahara, K.; Adisoejoso, J.; Lazzaroni, R.; Tobe, Y.; De Feyter, S. Programmable Hierarchical Three-Component 2d Assembly at a Liquid-Solid Interface: Recognition, Selection, and Transformation. Nano Lett. 2008, 8, 2541-2546. (22) Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982, 49, 57-61. (23) Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. 7x7 Reconstruction on Si(111) Resolved in Real Space. Phys. Rev. Lett. 1983, 50, 120-123. (24) Hui, T. W. Scanning Tunneling Microscopy: A Tutorial. http://www.chembio.uoguelph.ca/educmat/chm729/STMpage/stmdet.htm. (25) Schmid, M. Scanningtunnelingmicroscope Schematic. http://upload.wikimedia.org/wikipedia/commons/f/f9/ScanningTunnelingMicroscope_schematic.png. (26) http://veeco.com/. (27) TERNES, M., Scanning Tunneling Spectroscopy at the Single Atom Scale. 2006. (28) Fernandez Torrente, I. Local Spectroscopy of Bi-Molecular Self-Assemblies. Freie Universitat Berlin, 2008. (29) Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418-2421. (30) Zhang, X.; Chen, T.; Chen, Q.; Deng, G. J.; Fan, Q. H.; Wan, L. J. One Solvent Induces a Series of Structural Transitions in Monodendron Molecular Self-Assembly from Lamellar to Quadrangular to Hexagonal. Chem. Eur. J. 2009, 15, 9669-9673. (31) Simpson, C. D.; Wu, J. S.; Watson, M. D.; Mullen, K. From Graphite Molecules to Columnar Superstructures - an Exercise in Nanoscience. J. Mater. Chem. 2004, 14, 494-504. (32) Bushby, R. J.; Lozman, O. R. Photoconducting Liquid Crystals. Curr. Opin. Solid State Mater. Sci. 2002, 6, 569-578. (33) Li, Q. A.; Zhou, X. L. Novel Well-Defined Photoconducting Discotic Liquid Crystals. Abstr. Pap. Am. Chem. Soc. 2007, 233. (34) Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Fast Photoconduction in the Highly Ordered Columnar Phase of a Discotic Liquid-Crystal. Nature 1994, 371, 141-143. (35) Warman, J. M.; Piris, J.; Pisula, W.; Kastler, M.; Wasserfallen, D.; Mullen, K. Charge Recombination Via Intercolumnar Electron Tunneling through the Lipid-Like Mantle of Discotic Hexa-Alkyl-Hexa-Peri-Hexabenzocoronenes. J. Am. Chem. Soc. 2005, 127, 14257-14262. (36) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Discotic Liquid Crystals: From Tailor-Made Synthesis to Plastic Electronics. Angew. Chem. Int. Ed. 2007, 46, 4832-4887. (37) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science 2001, 293, 1119-1122. (38) van Hameren, R.; Schon, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers Via Self-Assembly and Dewetting. Science 2006, 314, 1433-1436. (39) Brinkmann, M.; Wittmann, J. C.; Barthel, M.; Hanack, M.; Chaumont, C. Highly Ordered Titanyl Phthalocyanine Films Grown by Directional Crystallization on Oriented Poly(Tetrafluoroethylene) Substrate. Chem. Mater. 2002, 14, 904-914. (40) Steinhart, M.; Zimmermann, S.; Goring, P.; Schaper, A. K.; Gosele, U.; Weder, C.; Wendorff, J. H. Liquid Crystalline Nanowires in Porous Alumina: Geometric Confinement Versus Influence of Pore Walls (Vol 5, Pg 432, 2005). Nano Lett. 2005, 5, 995-995. (41) Monobe, H.; Awazu, K.; Shimizu, Y. Alignment Control of a Columnar Liquid Crystal for a Uniformly Homeotropic Domain Using Circularly Polarized Infrared Irradiation. Adv. Mater. 2006, 18, 607-610. (42) Samori, P.; Severin, N.; Simpson, C. D.; Mullen, K.; Rabe, J. P. Epitaxial Composite Layers of Electron Donors and Acceptors from Very Large Polycyclic Aromatic Hydrocarbons. J. Am. Chem. Soc. 2002, 124, 9454-9457. (43) Wasserfallen, D.; Fischbach, I.; Chebotareva, N.; Kastler, M.; Pisula, W.; Jackel, F.; Watson, M. D.; Schnell, I.; Rabe, J. P.; Spiess, H. W.; Mullen, K. Influence of Hydrogen Bonds on the Supramolecular Order of Hexa-Peri-Hexabenzocoronenes. Adv. Funct. Mater. 2005, 15, 1585-1594. (44) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. A Zone-Casting Technique for Device Fabrication of Field-Effect Transistors Based on Discotic Hexa-Peri-Hexabenzoeoronene. Adv. Mater. 2005, 17, 684-689. (45) Cristadoro, A.; Lieser, G.; Rader, H. J.; Mullen, K. Field-Force Alignment of Disc-Type Π Systems. ChemPhysChem 2007, 8, 586-591. (46) Klymchenko, A. S.; Furukawa, S.; Mullen, K.; Van der Auweraer, M.; De Feyter, S. Supramolecular Hydrophobic-Hydrophilic Nanopatterns at Electrified Interfaces. Nano Lett. 2007, 7, 791-795. (47) Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Bo‥ker, A.; Krausch, G. Large Scale Alignment of a Lamellar Block Copolymer Thin Film Via Electric Fields: A Time-Resolved Sfm Study. Soft Matter 2006, 2, 1089-1094. (48) Lee, J.-H.; Choi, S.-M.; Pate, B. D.; Chisholm, M. H.; Han, Y.-S. Magnetic Uniaxial Alignment of the Columnar Superstructure of Discotic Metallomesogens over the Centimetre Length Scale. J. Mater. Chem. 2006, 16, 2785-2791. (49) Koerner, H.; Hampton, E.; Dean, D.; Turgut, Z.; Drummy, L.; Mirau, P.; Vaia, R. Generating Triaxial Reinforced Epoxy/Montmorillonite Nanocomposites with Uniaxial Magnetic Fields. Chem. Mater. 2005, 17, 1990-1996. (50) Hoogboom, J.; Elemans, J. A. A. W.; Rasing, T.; Rowan, A. E.; Nolte, R. J. M. Supramolecular Command Surfaces for Liquid Crystal Alignment. Polym. Int. 2007, 56, 1186-1191. (51) Zheng, Z.; Yim, K. H.; Saifullah, M. S.; Welland, M. E.; Friend, R. H.; Kim, J. S.; Huck, W. T. Uniaxial Alignment of Liquid-Crystalline Conjugated Polymers by Nanoconfinement. Nano Lett. 2007, 7, 987-992. (52) Russell, J. M.; Oh, S. J.; LaRue, I.; Zhou, O.; Samulski, E. T. Alignment of Nematic Liquid Crystals Using Carbon Nanotube Films. Thin Solid Films 2006, 509, 53-57. (53) Piot, L.; Marchenko, A.; Wu, J.; Mullen, K.; Fichou, D. Structural Evolution of Hexa-Peri-Hexabenzocoronene Adlayers in Heteroepitaxy on N-Pentacontane Template Monolayers. J. Am. Chem. Soc. 2005, 127, 16245-16250. (54) Barrena, E.; Osso, J. O.; Schreiber, F.; Garriga, M.; Alonso, M. I.; Dosch, H. Self-Organization of Phthalocyanines on Al2o3 (1120) in Aligned and Order Films. J. Mater. Res. 2004, 19, 2061. (55) Hoogboom, J.; Behdani, M.; Elemans, J. A. A. W.; Devillers, M. A. C.; Gelder, R. d.; Rowan, A. E.; Rasing, T.; Nolte, R. J. M. Noncontact Liquid-Crystal Alignment by Supramolecular Amplification of Nanogrooves. Angew. Chem. Int. Ed. 2003, 42, 1812-1815. (56) Qiu, X.; Wang, C.; Zeng, Q.; Xu, B.; Yin, S.; Wang, H.; Xu, S.; Bai, C. Alkane-Assisted Adsorption and Assembly of Phthalocyanines and Porphyrins. J. Am. Chem. Soc. 2000, 122, 5550-5556. (57) Iinuma, Y.; Kishimoto, K.; Sagara, Y.; Yoshio, M.; Mukai, T.; Kobayashi, I.; Ohno, H.; Kato, T. Uniaxially Parallel Alignment of a Smectic a Liquid-Crystalline Rod-Coil Molecule and Its Lithium Salt Complexes Using Rubbed Polyimides. Macromolecules 2007, 40, 4874-4878. (58) Ofuji, M.; Inaba, K.; Omote, K.; Hoshi, H.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Growth Process of Vacuum Deposited Copper Phthalocyanine Thin Films on Rubbing-Treated Substrates. Jpn. J. Appl. Phys., Part 1 2003, 42, 7520-7524. (59) Manaka, T.; Taguchi, K.; Ishikawa, K.; Takezoe, H. Highly Aligned Α-Type Copper Phthalocyanine Formed on Rubbed Polyimide Alignment Layer. Jpn. J. Appl. Phys. 2000, 39, 4910. (60) Ozaki, M.; Fujisawa, T.; Fujii, A.; Tong, L.; Yoshino, K.; Kijima, M.; Kinoshita, I.; Shirakawa, H. Anomalous Optical Anisotropy Induced by Liquid Crystallinity of Poly(2,5-Dialkoxy-Pphenylene- butadiynylene) Using a Conventional Rubbing Process. Adv. Mater. 2000, 12, 587. (61) Zhou, S. Q.; Liu, Y. Q.; Qiu, W. F.; Xu, Y.; Huang, X. B.; Li, Y. S.; Jiang, L.; Zhu, D. B. Synthetic Molecular Rectifier of a Langmuir-Blodgett Film Based on a Novel Asymmetrically Substituted Dicyano-Tri-Tert-Butylphthalocyanine. Adv. Funct. Mater. 2002, 12, 65-69. (62) Palermo, V.; Palma, M.; Tomovic, Z.; Watson, M. D.; Mullen, K.; Samori, P. Self-Assembly of Pi-Conjugated Discs on Heterogeneous Surfaces: Effect of the Micro- and Nano-Scale Dewetting. Synth. Met. 2004, 147, 117-121. (63) Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T.; Sirringhaus, H. Dewetting of Conducting Polymer Inkjet Droplets on Patterned Surfaces. Nat. Mater. 2004, 3, 171-176. (64) Kimura, M.; Misner, M. J.; Xu, T.; Kim, S. H.; Russell, T. P. Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning. Langmuir 2003, 19, 9910-9913. (65) Higgins, A. M.; Jones, R. A. L. Anisotropic Spinodal Dewetting as a Route to Self-Assembly of Patterned Surfaces. Nature 2000, 404, 476-478. (66) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. A Zone-Casting Technique for Device Fabrication of Field-Effect Transistors Based on Discotic Hexa-Peri-Hexabenzocoronene. Adv. Mater. 2005, 17, 684-689. (67) Tang, C. B.; Tracz, A.; Kruk, M.; Zhang, R.; Smilgies, D. M.; Matyjaszewski, K.; Kowalewski, T. Long-Range Ordered Thin Films of Block Copolymers Prepared by Zone-Casting and Their Thermal Conversion into Ordered Nanostructured Carbon. J. Am. Chem. Soc. 2005, 127, 6918-6919. (68) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Mullen, K.; Pakula, T. Uniaxial Alignment of the Columnar Super-Structure of a Hexa (Alkyl) Hexa-Peri-Hexabenzocoronene on Untreated Glass by Simple Solution Processing. J. Am. Chem. Soc. 2003, 125, 1682-1683. (69) Huang, J. X.; Kim, F.; Tao, A. R.; Connor, S.; Yang, P. D. Spontaneous Formation of Nanoparticle Stripe Patterns through Dewetting. Nat. Mater. 2005, 4, 896-900. (70) Min, Y.; Akbulut, M.; Belman, N.; Golan, Y.; Zasadzinski, J.; Israelachvili, J. Normal and Shear Forces Generated During the Ordering (Directed Assembly) of Confined Straight and Curved Nanowires. Nano Lett. 2008, 8, 246-252. (71) Soloman, T.; Soloman, M. J. Stacking Fault Structure in Shear-Induced Colloidal Crystallization. J. Chem. Phys. 2006, 124, 134905. (72) Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Shear-Induce Alignment in Thin Films of Spherical Nanodomains. Adv. Mater. 2005, 17, 1878-1881. (73) Yang, Y. G.; Suzuki, M.; Shirai, H.; Kurose, A.; Hanabusa, K. Nanofiberization of Inner Helical Mesoporous Silica Using Chiral Gelator as Template under a Shear Flow. Chem. Commun. 2005, 2032-2034. (74) Hedberg, J.; Dong, L.; Jiao, J. Air Flow Technique for Large Scale Dispersion and Alignment of Carbon Nanotubes on Various Substrates. Appl. Phys. Lett. 2005, 86, 143111-[1-3]. (75) Angelescu, D. E.; Waller, J. H.; Adamson, D. H.; Deshpande, P.; Chou, S. Y.; Register, R. A.; Chaikin, P. M. Macroscopic Orientation of Block Copolymer Cylinders in Single-Layer Films by Shearing. Adv. Mater. 2004, 16, 1736-1740. (76) Geng, J.; Zhao, X.; Zhou, E.; Li, G.; Lam, J. W. Y.; Tang, B. Z. Shear Induced Molecular Alignments of a Side-Chain Liquid Crystalline Polyacetylene Containing Biphenyl Mesogens. Polymer 2003, 44, 8095-8102. (77) Caroline, P.-R.; Laurence, N. Observation of Shear-Inducednematic-Isotropic Transition in Side-Chain Liquid Crystal Polymers. Nature 2001, 409, 167-171. (78) Melosh, N. A.; Davidson, P.; Feng, P.; Pine, D. J.; Chmelka, B. F. Macroscopic Shear Alignment of Bulk Transparent Mesostructured Silica. J. Am. Chem. Soc. 2001, 123, 1240-1241. (79) Maruyama, T.; Fuller, G.; Frank, C.; Robertson, C. Flow-Induced Molecular Orientation of a Langmuir Film. Science 1996, 274, 233-235. (80) Lee, S. L.; Chi, C. Y. J.; Huang, M. J.; Chen, C. H.; Li, C. W.; Pati, K.; Liu, R. S. Shear-Induced Long-Range Uniaxial Assembly of Polyaromatic Monolayers at Molecular Resolution. J. Am. Chem. Soc. 2008, 130, 10454-10455. (81) Lee, S. L.; Huang, M. J.; Chen, C. H.; Wang, C. I.; Liu, R. S. Diode-Like I-V Characteristics of a Nonplanar Polyaromatic Compound: A Spectroscopic Study of Isolated and Stacked Dibenzo[G, P]Chrysene. Chemistry-an Asian Journal 2011, 6, 1181-1187. (82) Shokri, R.; Lacour, M. A.; Jarrosson, T.; Lere-Porte, J. P.; Serein-Spirau, F.; Miqueu, K.; Sotiropoulos, J. M.; Vonau, F.; Aubel, D.; Cranney, M.; Reiter, G.; Simon, L. Generating Long Supramolecular Pathways with a Continuous Density of States by Physically Linking Conjugated Molecules Via Their End Groups. J. Am. Chem. Soc. 2013, 135, 5693-5698. (83) Reinitzer, F. Contributions to the Understanding of Cholesterol. Monatsh. Chem. 1888, 9, 421-441. (84) Lehmann, O. Z. Phys. Chem. 1889, 4, 462-472. (85) Pisula, W.; Zorn, M.; Chang, J. Y.; Mullen, K.; Zentel, R. Liquid Crystalline Ordering and Charge Transport in Semiconducting Materials. Macromol. Rapid Commun. 2009, 30, 1179-1202. (86) Nealon, G. L.; Greget, R.; Dominguez, C.; Nagy, Z. T.; Guillon, D.; Gallani, J. L.; Donnio, B. Liquid-Crystalline Nanoparticles: Hybrid Design and Mesophase Structures. Beilstein J. Org. Chem. 2012, 8, 349-370. (87) Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Liquid-Crystals of Disc-Like Molecules. Pramana 1977, 9, 471-480. (88) Lee, S. L.; Lin, H. A.; Lin, Y. H.; Chen, H. H.; Liao, C. T.; Lin, T. L.; Chu, Y. C.; Hsu, H. F.; Chen, C. H.; Lee, J. J.; Hung, W. Y.; Liu, Q. Y.; Wu, C. H. Gearing of Molecular Swirls: Columnar Packing of Nematogenic Hexakis(4-Alkoxyphenylethynyl)Benzene Derivatives. Chem. Eur. J. 2011, 17, 792-799. (89) Batra, I. P.; Garcia, N.; Rohrer, H.; Salemink, H.; Stoll, E.; Ciraci, S. A Study of Graphite Surface with Stm and Electronic Structure Calculations. Surf. Sci. 1987, 181, 126-138. (90) Tatar, R. C.; Rabii, S. Electronic Properties of Graphite: A Unified Theoretical Study. Physical Review B 1982, 25, 4126-4141. (91) http://www.nanotech-america.com/hopginformation.html. (92) Ph.D. Dissertation, P. S., Humboldt-Universitat, 2000. (93) Pierson, H. O. H. o. C., Graphite, Diamond and; Fullerenes. (94) Chen, H. H.; Lin, H. A.; Lai, Y. H.; Lin, S. Y.; Chiang, C. H.; Hsu, H. F.; Shih, T. L.; Lee, J. J.; Lai, C. C.; Kuo, T. S. Enantiotropic Nematics from Cross-Like 1,2,4,5-Tetrakis(4 '-Alkyl-4-Ethynylbiphenyl)Benzenes and Their Biaxiality Studies. Chem. Eur. J. 2012, 18, 9543-9551. (95) Tahara, K.; Lei, S. B.; Adisoejoso, J.; De Feyter, S.; Tobe, Y. Supramolecular Surface-Confined Architectures Created by Self-Assembly of Triangular Phenylene-Ethynylene Macrocycles Via Van Der Waals Interaction. Chem. Commun. 2010, 46, 8507-8525. (96) Yang, Y. L.; Wang, C. Hierarchical Construction of Self-Assembled Low-Dimensional Molecular Architectures Observed by Using Scanning Tunneling Microscopy. Chem. Soc. Rev. 2009, 38, 2576-2589. (97) Yang, Z.-Y.; Zhang, H.-M.; Yan, C.-J.; Li, S.-S.; Yan, H.-J.; Song, W.-G.; Wan, L.-J. Scanning Tunneling Microscopy of the Formation, Transformation, and Property of Oligothiophene Self-Organizations on Graphite and Gold Surfaces. Proc. Natl. Acad. Sci. 2007, 104, 3707-3712. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18529 | - |
| dc.description.abstract | 電子平行於表面傳遞對於發展奈米級有機分子元件而言是一項重要的議題。自組裝分子可被廣泛用來製備分子元件中的圖案,分子排列後堆疊的位向則決定了電子傳遞的路徑,如何依據元件的需求而設計自組裝分子堆疊的位向來達到有效的電子傳遞則是現今熱門的研究方向。本論文所使用的分子結構主要是以苯環為核心、四組炔基聯苯所構成的1,2,4,5-四炔聯苯基苯(1,2,4,5-tetrakis-(4-dodecyl- 4'-ethynylbiphenyl)benzene, TBPB)雙軸分子,報導新穎的自組裝排列。利用乙炔基連接可旋轉的特徵,使聯苯的旋轉達到face-on與edge-on的位向,透過掃描穿隧顯微術(Scanning Tunneling Microscopy)及掃描穿隧能譜(Scanning Tunneling Spectroscopy)討論分子於表面排列的情形與其電性。 | zh_TW |
| dc.description.abstract | This thesis reports the electronic communications between edge-on biphenyl moieties of biaxial TBPB (1,2,4,5-tetrakis-(4-dodecyl-4'- ethynyl-biphenyl)-benzene) by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Assemblies were realized by taking the advantages of the rotatable ethynyl linkers of the TBPB. Rotatable ethynyl linkers allowed the biphenyl moieties of the TBPB to adopt both face-on and edge-on orientations. We compared the difference of arrangements and electronic properties of TBPB under two concentrations, 0.32 mM and 3.2 microM. Topographic images revealed two kinds of concentrations, 0.32 mM and 3.2 microM., respectively, linear and mesh. Linear motif showed face-on and edge-on orientations because of different heights between biphenyls of TBPB in section profiles. Mesh motif showed only face-on orientation because of the same height of biphenyls of TBPB in section profiles. I–V curves of both motifs are asymmetric with respect to current at zero bias. The asymmetric feature was more significant for the linear motif than the mesh one, resulting in a larger tunneling current and a smaller turn-on voltage for the former. Linear motif were more conductive since edge-on orientations produce an effective electronic coupling between π-stacked biphenyls. Thereby, edge-on biphenyl moieties of biaxial molecule TBPB is the key to the successful assembly of conjugated 1D nanowires. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:10:03Z (GMT). No. of bitstreams: 1 ntu-103-R00223139-1.pdf: 5509557 bytes, checksum: dcd31a24a08def65d81a1c8313cd7d50 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 中文摘要 ix ABSTRACT x 目錄 xi 圖目錄 xiv 表目錄 xvii 第一章 緒 論 18 1.1 前言 18 1.2 掃瞄穿隧顯微鏡之簡介 20 1.2.1 掃瞄穿隧顯微鏡發展史 20 1.2.2 穿隧效應 21 1.3 STM之工作原理 23 1.3.1 STM之操作模式 24 1.3.2 掃描穿隧能譜原理 26 1.3.3 共振穿隧效應 28 1.4 分子自組裝之作用力 30 1.5 分子自組裝排列-堆疊位向種類 34 1.5.1 分子軸與表面垂直(edge-on)排列重要性 35 1.5.2 官能基旋轉達到edge-on 排列效果 37 1.6 液晶分子簡介 40 1.6.1 液晶分類 41 1.6.2 盤狀液晶在表面之排列 41 1.7 本論文研究目的 43 第二章 實驗部分 44 2.1 藥品、耗材 44 2.2 實驗儀器 46 2.2.1 掃描穿隧顯微鏡 46 2.2.2 訊號外接模組 49 2.2.3 動態訊號擷取卡 50 2.2.4 鎖相放大器 51 2.2.5 訊號擷取卡之儀器接線方法 52 2.3 脈衝電壓設定 54 2.4 分子影像掃描流程 56 2.4.1 探針製備 56 2.4.2 樣品製備與基材處理 57 2.4.3 影像掃描與數據處理 58 2.4.4 分子模型繪圖方式 59 2.5 掃描穿隧能譜量測方式dI/dV-V 60 第三章 雙軸分子之聯苯堆疊位向對自組裝排列與電性之影響 61 3.1 TBPB的排列探討 61 3.2 排列延續性與濃度效應 65 3.3 飽和烷對兩種排列的影響 67 3.4 TBPB在不具共吸附的溶劑分子排列 68 3.5 不同溶劑下堆疊密度計算與比較 69 3.6 TBPB上聯苯的位向探討-切面圖分析 72 3.7 線性排列下分子間作用力的探討 75 3.8 dI/dV-V之掃描穿隧能譜探討 77 3.9 線性排列的穩定性 80 第四章 結 論 81 第五章 參考文獻 82 第六章 附 錄 90 6.1 DI-STM 之 STS操作步驟與接線方式 90 6.1.1 硬體設備(順序對應下面照片): 90 6.1.2 軟體設備(順序對應下圖): 91 6.1.3 儀器連接方式 (詳細版) 92 儀器連接方式 (懶人版) 93 6.1.4 . lock-in Amplifier 設置 94 6.1.5 軟體設置 95 6.2 標準樣品HOPG之文獻與實驗之dI/dV-V比較 97 6.3 TBPB 線性排列 ±2 V 與 ±3 V 範圍之STS 99 6.3.1 飽和烷位置之I-V與dI/dV-V 99 6.3.2 多苯環位置之I-V與dI/dV-V 100 圖目錄 圖 1-1電子在兩電極間距離為無窮大時波函數示意圖 22 圖 1-2電子在兩電極距離接近時波函數示意圖 22 圖 1-3 STM工作原理示意圖 23 圖 1-4 STM操作模式示意圖 25 圖 1-5經由鎖相放大器獲得dI/dV-V的示意圖 27 圖 1-6掃描穿隧能譜的偵測原理 28 圖 1-7共振穿隧效應能階示意圖 29 圖 1-8分子於液固界面下自組裝排列 30 圖 1-9 0.5 mM下BIC分子於表面排列的情形與模型圖 31 圖 1-10中濃度下BIC分子於表面排列的情形與模型圖 32 圖 1-11濃度稀釋至50 μM以下的BIC分子於表面排列的情形與模型圖 33 圖 1-12 (a)立起位向與(b)平躺位向示意圖 34 圖 1-13毛細現象誘導排列法使DBC分子產生大範圍的edge-on位向排列 36 圖 1-14 2TBT模型、STS資訊與HOMO、LUMO的分子影像 38 圖 1-15 TBT分子之STM影像、dI/dV影像分子排列模型 39 圖 1-16常見的液晶分子結構 41 圖 1-17盤狀液晶的分子結構 42 圖 1-18六炔苯基苯衍生物(HPB)於石墨表面的排列 42 圖 1-19 (a)雙軸分子結構;(b)、(c)聯苯旋轉形成edge-on位向堆疊排列示意圖 43 圖 2-1微放大轉換器(左圖)、低電流掃描頭(右圖) 46 圖 2-2基座(Nanoscope IIIa Multimode SPM) 47 圖 2-3法拉第箱(左圖)與減震系統(右圖) 48 圖 2-4訊號外接模組 49 圖 2-5動態訊號擷取卡(DAQ card),USB-6361 50 圖 2-6鎖相放大器 51 圖 2-7 DAQ與SAM接線方法:breakout box 52 圖 2-8 DAQ與SAM接線方法:DAQ 53 圖 2-9電流與電壓監控介面 54 圖 2-10電壓輸出設定介面 55 圖 2-11商業化Pt-Ir探針SEM影像圖 56 圖 2-12使用自製Pt-Ir探針掃描HOPG之STM影像 57 圖 3-1液晶分子TBPB與所使用之十六烷溶劑之分子結構 61 圖 3-2 TBPB在十六烷溶劑中高濃度(0.32 mM)與低濃度(3.2 μM)下形成的線性排列與交錯排列及模型圖 63 圖 3-3 TBPB在共吸附十六烷溶劑下的濃度效應(個差一個數量級)影像 66 圖 3-4 0.32 mM 的TBPB在1-phenyloctane溶劑之液固界面STM影像與模型 68 圖 3-5 TBPB在線性排列形貌下的剖面圖分析與聯苯旋轉差異之模型圖 73 圖 3-6 TBPB於網孔排列下的形貌剖面圖分析 74 圖 3-7 STS重複性實驗 76 圖 3-8 STS的量測位置與相對應之I-V曲線 76 圖 3-9 線性排列中飽和烷位置之I-V與dI/dV-V 曲線圖 77 圖 3-10線性排列中多苯環位置之I-V與dI/dV-V 曲線圖 78 圖 3-11不同的偏壓下TBPB在線性排列下的影像 79 圖 3-12 TBPB之穩定的線性排列 80 圖 4-1線性排列是由聯苯旋轉形成face-on (穩定分子)與edge-on位向堆疊(形成強烈的分子間作用力)而穩定形成 81 圖 6-1 dI/dV-V具有對稱的V字型且向上延伸的特徵 97 圖 6-2掃描偏壓設為±1.5 V之HOPG的I-V與dI/dV-V 曲線 97 圖 6-3掃描偏壓設為±2 V之HOPG的I-V與dI/dV-V 曲線 97 圖 6-4掃描偏壓設為±3 V之HOPG的I-V與dI/dV-V 曲線 98 圖 6-5掃描偏壓設為±2 V之飽和烷位置的I-V與dI/dV-V 曲線 99 圖 6-6掃描偏壓設為±3 V之飽和烷位置的I-V與dI/dV-V 曲線 99 圖 6-7掃描偏壓設為±2 V之多苯環位置的I-V與dI/dV-V 曲線 100 圖 6-8掃描偏壓設為±3 V之多苯環位置的I-V與dI/dV-V 曲線 100 表目錄 表 3-1 TBPB堆疊密度之計算與計算過程 70 | |
| dc.language.iso | zh-TW | |
| dc.title | 四炔聯苯基苯之單層膜結構與其穿隧能譜:炔基與聯苯之旋轉對分子自組裝的影響 | zh_TW |
| dc.title | The Effect of Rotatable Ethynyls on the Monolayer Structure
of a Biaxial Biphenyl(ethynyl)benzene: an STM/STS Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱勝賢(Sheng-Hsien Chiu),徐秀福(Hsiu-Fu Hsu) | |
| dc.subject.keyword | 掃描穿隧顯微術,掃描穿隧能譜,平躺位向,立起位向,電荷轉移,奈米導線, | zh_TW |
| dc.subject.keyword | Scanning Tunneling Microscopy,Scanning Tunneling Spectroscopy,HOPG,TBPB,Face-on,Edge-on,Charge Transfer, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
