請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18512
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁 | |
dc.contributor.author | Tsai-Chen Chiang | en |
dc.contributor.author | 江采蓁 | zh_TW |
dc.date.accessioned | 2021-06-08T01:09:08Z | - |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | Reference
Ada-Nguema, A.S., H. Xenias, J.M. Hofman, C.H. Wiggins, M.P. Sheetz, and P.J. Keely. 2006. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. J Cell Sci. 119:1307-1319. Alme, M.N., K. Wibrand, G. Dagestad, and C.R. Bramham. 2007. Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF- induced long-term potentiation. Neural plasticity. 2007:26496. Balkovetz, D.F., E.R. Gerrard, Jr., S. Li, D. Johnson, J. Lee, J.W. Tobias, K.K. Rogers, R.W. Snyder, and J.H. Lipschutz. 2004. Gene expression alterations during HGF- induced dedifferentiation of a renal tubular epithelial cell line (MDCK) using a novel canine DNA microarray. Am J Physiol Renal Physiol. 286:F702-710. Berginski, M.E., E.A. Vitriol, K.M. Hahn, and S.M. Gomez. 2011. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One. 6:e22025. Bokoch, G.M. 2003. Biology of the p21-activated kinases. Annu Rev Biochem. 72:743- 781. Bokoch, G.M., A.M. Reilly, R.H. Daniels, C.C. King, A. Olivera, S. Spiegel, and U.G. Knaus. 1998. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J Biol Chem. 273:8137- 8144. Bright, M.D., A.P. Garner, and A.J. Ridley. 2009. PAK1 and PAK2 have different roles in HGF-induced morphological responses. Cellular signalling. 21:1738-1747. Brown, H.A., S. Gutowski, R.A. Kahn, and P.C. Sternweis. 1995. Partial purification and characterization of Arf-sensitive phospholipase D from porcine brain. J Biol Chem. 270:14935-14943. Brown, M.C., K.A. West, and C.E. Turner. 2002. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell. 13:1550-1565. Brutsch, R., S.S. Liebler, J. Wustehube, A. Bartol, S.E. Herberich, M.G. Adam, A. Telzerow, H.G. Augustin, and A. Fischer. 2010a. Integrin cytoplasmic domain- associated protein-1 attenuates sprouting angiogenesis. Circ Res. 107:592-601. Brutsch, R., S.S. Liebler, J. Wustehube, A. Bartol, S.E. Herberich, M.G. Adam, A. Telzerow, H.G. Augustin, and A. Fischer. 2010b. Integrin Cytoplasmic Domain- Associated Protein-1 Attenuates Sprouting Angiogenesis. Circ Res. Bucci, C., R.G. Parton, I.H. Mather, H. Stunnenberg, K. Simons, B. Hoflack, and M. Zerial. 1992. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell. 70:715-728. Burton, G.R., R. Nagarajan, C.A. Peterson, and R.E. McGehee, Jr. 2004. Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene. 329:167-185. Buttitta, L., T.S. Tanaka, A.E. Chen, M.S. Ko, and C.M. Fan. 2003. Microarray analysis of somitogenesis reveals novel targets of different WNT signaling pathways in the somitic mesoderm. Dev Biol. 258:91-104. Casanova, J.E. 2007. Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic. 8:1476-1485. Cau, J., and A. Hall. 2005. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci. 118:2579 2587. Chan, P.M., L. Lim, and E. Manser. 2008. PAK is regulated by PI3K, PIX, CDC42, and PP2Calpha and mediates focal adhesion turnover in the hyperosmotic stress-induced p38 pathway. J Biol Chem. 283:24949-24961. Chen, P.W., X. Jian, H.Y. Yoon, and P.A. Randazzo. 2013. ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. J Biol Chem. 288:5849-5860. Chiang, Y.T., and T. Jin. 2014. p21-Activated protein kinases and their emerging roles in glucose homeostasis. American journal of physiology. Endocrinology and metabolism. 306:E707-722. Ching, Y.P., V.Y. Leong, M.F. Lee, H.T. Xu, D.Y. Jin, and I.O. Ng. 2007. P21- activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer research. 67:3601-3608. Chong, C., L. Tan, L. Lim, and E. Manser. 2001. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem. 276:17347-17353. Christoforidis, S., H.M. McBride, R.D. Burgoyne, and M. Zerial. 1999. The Rab5 effector EEA1 is a core component of endosome docking. Nature. 397:621-625. Coniglio, S.J., S. Zavarella, and M.H. Symons. 2008. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol. 28:4162-4172. Cote, J.F., and K. Vuori. 2007. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends in cell biology. 17:383-393. D'Souza-Schorey, C., and P. Chavrier. 2006. ARF proteins: roles in membrane traffic and beyond. Nature reviews. Molecular cell biology. 7:347-358. Daniels, R.H., P.S. Hall, and G.M. Bokoch. 1998. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17:754-764. del Pozo, M.A., L.S. Price, N.B. Alderson, X.D. Ren, and M.A. Schwartz. 2000. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19:2008-2014. Delorme, V., M. Machacek, C. DerMardirossian, K.L. Anderson, T. Wittmann, D. Hanein, C. Waterman-Storer, G. Danuser, and G.M. Bokoch. 2007. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell. 13:646-662. Delorme-Walker, V.D., J.R. Peterson, J. Chernoff, C.M. Waterman, G. Danuser, C. Dermardirossian, and G.M. Bokoch. 2011. Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. J Cell Biol. 193:1289-1303. Derby, M.C., Z.Z. Lieu, D. Brown, J.L. Stow, B. Goud, and P.A. Gleeson. 2007. The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic. 8:758-773. Dharmawardhane, S., L.C. Sanders, S.S. Martin, R.H. Daniels, and G.M. Bokoch. 1997. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J Cell Biol. 138:1265-1278. Donaldson, J.G., and C.L. Jackson. 2000. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol. 12:475-482. Donaldson, J.G., and C.L. Jackson. 2011. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature reviews. Molecular cell biology. 12:362-375. East, M.P., J.B. Bowzard, J.B. Dacks, and R.A. Kahn. 2012. ELMO domains, evolutionary and functional characterization of a novel GTPase-activating protein (GAP) domain for Arf protein family GTPases. J Biol Chem. 287:39538-39553. Edwards, D.C., L.C. Sanders, G.M. Bokoch, and G.N. Gill. 1999. Activation of LIM- kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1:253-259. Engel, T., A. Lueken, G. Bode, U. Hobohm, S. Lorkowski, B. Schlueter, S. Rust, P. Cullen, M. Pech, G. Assmann, and U. Seedorf. 2004. ADP-ribosylation factor (ARF)- like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI- dependent cholesterol export. FEBS letters. 566:241-246. Enomoto, K., and D.M. Gill. 1980. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. J Biol Chem. 255:1252-1258. Futschik, M., Aaron Jeffs, Sharon Pattison, Nikola Kasabov, Michael Sullivan, Arend Merrie, and A. Reeve. 2002. Gene expression profiling of metastatic and non-metastatic colorectal cancer cell lines. GENOME LETTERS. 1:26-34. Galisteo, M.L., J. Chernoff, Y.C. Su, E.Y. Skolnik, and J. Schlessinger. 1996. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J Biol Chem. 271:20997-21000. Gardel, M.L., I.C. Schneider, Y. Aratyn-Schaus, and C.M. Waterman. 2010. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 26:315-333. Gillingham, A.K., and S. Munro. 2007. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 23:579-611. Grimsley, C.M., J.M. Kinchen, A.C. Tosello-Trampont, E. Brugnera, L.B. Haney, M. Lu, Q. Chen, D. Klingele, M.O. Hengartner, and K.S. Ravichandran. 2004. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem. 279:6087-6097. Hashimoto, S., M. Hirose, A. Hashimoto, M. Morishige, A. Yamada, H. Hosaka, K. Akagi, E. Ogawa, C. Oneyama, T. Agatsuma, M. Okada, H. Kobayashi, H. Wada, H. Nakano, T. Ikegami, A. Nakagawa, and H. Sabe. 2006. Targeting AMAP1 and cortactin binding bearing an atypical src homology 3/proline interface for prevention of breast cancer invasion and metastasis. Proc Natl Acad Sci U S A. 103:7036-7041. Hashimoto, S., Y. Onodera, A. Hashimoto, M. Tanaka, M. Hamaguchi, A. Yamada, and H. Sabe. 2004. Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci U S A. 101:6647-6652. Hashimoto, S., A. Tsubouchi, Y. Mazaki, and H. Sabe. 2001. Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J Biol Chem. 276:6037-6045. Hayes, G.L., F.C. Brown, A.K. Haas, R.M. Nottingham, F.A. Barr, and S.R. Pfeffer. 2009. Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi. Mol Biol Cell. 20:209-217. Heo, W.D., T. Inoue, W.S. Park, M.L. Kim, B.O. Park, T.J. Wandless, and T. Meyer. 2006. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science. 314:1458-1461. Hofmann, I., A. Thompson, C.M. Sanderson, and S. Munro. 2007. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol. 17:711-716. Honda, A., M. Nogami, T. Yokozeki, M. Yamazaki, H. Nakamura, H. Watanabe, K. Kawamoto, K. Nakayama, A.J. Morris, M.A. Frohman, and Y. Kanaho. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell. 99:521-532. Hong, C., R. Walczak, H. Dhamko, M.N. Bradley, C. Marathe, R. Boyadjian, J.V. Salazar, and P. Tontonoz. 2011. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. Journal of lipid research. 52:531-539. Howe, A.K. 2001. Cell adhesion regulates the interaction between Nck and p21- activated kinase. J Biol Chem. 276:14541-14544. Jackson, T.R., B.G. Kearns, and A.B. Theibert. 2000. Cytohesins and centaurins: mediators of PI 3-kinase-regulated Arf signaling. Trends in biochemical sciences. 25:489-495. Jacobs, S., C. Schilf, F. Fliegert, S. Koling, Y. Weber, A. Schurmann, and H.G. Joost. 1999. ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal. FEBS letters. 456:384-388. Jacobs, S., A. Schurmann, W. Becker, T.M. Bockers, N.G. Copeland, N.A. Jenkins, and H.G. Joost. 1998. The mouse ADP-ribosylation factor-like 4 gene: two separate promoters direct specific transcription in tissues and testicular germ cell. Biochem J. 335 ( Pt 2):259-265. Kahn, R.A., and A.G. Gilman. 1984. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem. 259:6228-6234. Katoh, H., and M. Negishi. 2003. RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature. 424:461-464. Kelly, M.L., and J. Chernoff. 2011. Getting smart about p21-activated kinases. Mol Cell Biol. 31:386-387. Kissil, J.L., E.W. Wilker, K.C. Johnson, M.S. Eckman, M.B. Yaffe, and T. Jacks. 2003. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21- activated kinase, Pak1. Mol Cell. 12:841-849. Komander, D., M. Patel, M. Laurin, N. Fradet, A. Pelletier, D. Barford, and J.F. Cote. 2008. An alpha-helical extension of the ELMO1 pleckstrin homology domain mediates direct interaction to DOCK180 and is critical in Rac signaling. Mol Biol Cell. 19:4837- 4851. Koo, T.H., B.A. Eipper, and J.G. Donaldson. 2007. Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation. BMC cell biology. 8:29. Kubosaki, A., Y. Tomaru, M. Tagami, E. Arner, H. Miura, T. Suzuki, M. Suzuki, H. Suzuki, and Y. Hayashizaki. 2009. Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation. Genome Biol. 10:R41. Kumar, R., A.E. Gururaj, and C.J. Barnes. 2006. p21-activated kinases in cancer. Nat Rev Cancer. 6:459-471. Langille, S.E., V. Patki, J.K. Klarlund, J.M. Buxton, J.J. Holik, A. Chawla, S. Corvera, and M.P. Czech. 1999. ADP-ribosylation factor 6 as a target of guanine nucleotide exchange factor GRP1. J Biol Chem. 274:27099-27104. Lei, M., W. Lu, W. Meng, M.C. Parrini, M.J. Eck, B.J. Mayer, and S.C. Harrison. 2000. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 102:387-397. Leisner, T.M., M. Liu, Z.M. Jaffer, J. Chernoff, and L.V. Parise. 2005. Essential role of CIB1 in regulating PAK1 activation and cell migration. J Cell Biol. 170:465-476. Li, C.C., T.C. Chiang, T.S. Wu, G. Pacheco-Rodriguez, J. Moss, and F.J. Lee. 2007. ARL4D recruits Cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell. 18:4420-4437. Li, C.C., T.S. Wu, C.F. Huang, L.T. Jang, Y.T. Liu, S.T. You, G.G. Liou, and F.J. Lee. 2012. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential. PLoS One. 7:e43552. Li, R.H., and G.A. Churchill. 2010. Epistasis contributes to the genetic buffering of plasma HDL cholesterol in mice. Physiological genomics. 42A:228-234. Lin, C.Y., P.H. Huang, W.L. Liao, H.J. Cheng, C.F. Huang, J.C. Kuo, W.A. Patton, D. Massenburg, J. Moss, and F.J. Lee. 2000. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem. 275:37815-37823. Lin, C.Y., C.C. Li, P.H. Huang, and F.J. Lee. 2002. A developmentally regulated ARF- like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci. 115:4433-4445. Lin, Y.C., T.C. Chiang, Y.T. Liu, Y.T. Tsai, L.T. Jang, and F.J. Lee. 2011. ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci. 124:4014-4026. Loo, T.H., Y.W. Ng, L. Lim, and E. Manser. 2004. GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol Cell Biol. 24:3849-3859. Lu, W., S. Katz, R. Gupta, and B.J. Mayer. 1997. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol. 7:85- 94. Macia, E., F. Luton, M. Partisani, J. Cherfils, P. Chardin, and M. Franco. 2004. The GDP-bound form of Arf6 is located at the plasma membrane. J Cell Sci. 117:2389-2398. Manabe, R., M. Kovalenko, D.J. Webb, and A.R. Horwitz. 2002. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci. 115:1497-1510. Manser, E., T. Leung, H. Salihuddin, Z.S. Zhao, and L. Lim. 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 367:40-46. Manser, E., T.H. Loo, C.G. Koh, Z.S. Zhao, X.Q. Chen, L. Tan, I. Tan, T. Leung, and L. Lim. 1998. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell. 1:183-192. Massenburg, D., J.S. Han, M. Liyanage, W.A. Patton, S.G. Rhee, J. Moss, and M. Vaughan. 1994. Activation of rat brain phospholipase D by ADP-ribosylation factors 1,5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proceedings of the National Academy of Sciences of the United States of America. 91:11718-11722. Matsumoto, S., S. Fujii, A. Sato, S. Ibuka, Y. Kagawa, M. Ishii, and A. Kikuchi. 2014. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J. 33:702-718. Mendoza, P., R. Ortiz, J. Diaz, A.F. Quest, L. Leyton, D. Stupack, and V.A. Torres. 2013. Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. J Cell Sci. 126:3835-3847. Morreale, A., M. Venkatesan, H.R. Mott, D. Owen, D. Nietlispach, P.N. Lowe, and E.D. Laue. 2000. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat Struct Biol. 7:384-388. Moss, J., and M. Vaughan. 1998. Molecules in the ARF orbit. J Biol Chem. 273:21431- 21434. Munro, S. 2011. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harbor perspectives in biology. 3. Nayal, A., D.J. Webb, C.M. Brown, E.M. Schaefer, M. Vicente-Manzanares, and A.R. Horwitz. 2006. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol. 173:587-589. Nola, S., M. Sebbagh, S. Marchetto, N. Osmani, C. Nourry, S. Audebert, C. Navarro, R. Rachel, M. Montcouquiol, N. Sans, S. Etienne-Manneville, J.P. Borg, and M.J. Santoni. 2008. Scrib regulates PAK activity during the cell migration process. Hum Mol Genet. 17:3552-3565. Oh, S.J., and L.C. Santy. 2010. Differential effects of cytohesins 2 and 3 on beta1 integrin recycling. J Biol Chem. 285:14610-14616. Onodera, Y., S. Hashimoto, A. Hashimoto, M. Morishige, Y. Mazaki, A. Yamada, E. Ogawa, M. Adachi, T. Sakurai, T. Manabe, H. Wada, N. Matsuura, and H. Sabe. 2005. Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. Embo J. 24:963-973. Parrini, M.C., J. Camonis, M. Matsuda, and J. de Gunzburg. 2009. Dissecting activation of the PAK1 kinase at protrusions in living cells. J Biol Chem. 284:24133-24143. Parrini, M.C., M. Lei, S.C. Harrison, and B.J. Mayer. 2002. Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell. 9:73-83. Parsons, J.T., A.R. Horwitz, and M.A. Schwartz. 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature reviews. Molecular cell biology. 11:633-643. Patel, M., T.C. Chiang, V. Tran, F.J. Lee, and J.F. Cote. 2011. The Arf Family GTPase Arl4A Complexes with ELMO Proteins to Promote Actin Cytoskeleton Remodeling and Reveals a Versatile Ras-binding Domain in the ELMO Proteins Family. J Biol Chem. 286:38969-38979. Patel, M., Y. Margaron, N. Fradet, Q. Yang, B. Wilkes, M. Bouvier, K. Hofmann, and J.F. Cote. 2010. An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling. Curr Biol. 20:2021-2027. Puto, L.A., K. Pestonjamasp, C.C. King, and G.M. Bokoch. 2003. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J Biol Chem. 278:9388-9393. Ridley, A.J., M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons, and A.R. Horwitz. 2003. Cell migration: integrating signals from front to back. Science. 302:1704-1709. Sabe, H. 2003. Requirement for Arf6 in cell adhesion, migration, and cancer cell invasion. J Biochem (Tokyo). 134:485-489. Santiago-Medina, M., K.A. Gregus, and T.M. Gomez. 2013. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci. 126:1122-1133. Santy, L.C., and J.E. Casanova. 2001. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol. 154:599-610. Schober, M., S. Raghavan, M. Nikolova, L. Polak, H.A. Pasolli, H.E. Beggs, L.F. Reichardt, and E. Fuchs. 2007. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol. 176:667-680. Schurmann, A., M. Breiner, W. Becker, C. Huppertz, H. Kainulainen, H. Kentrup, and H.G. Joost. 1994. Cloning of two novel ADP-ribosylation factor-like proteins and characterization of their differential expression in 3T3-L1 cells. J Biol Chem. 269:15683-15688. Schurmann, A., S. Koling, S. Jacobs, P. Saftig, S. Krauss, G. Wennemuth, R. Kluge, and H.G. Joost. 2002. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factor-like 4 (Arl4) gene. Mol Cell Biol. 22:2761-2768. Stevenson, C., G. de la Rosa, C.S. Anderson, P.S. Murphy, T. Capece, M. Kim, and M.R. Elliott. 2014. Essential role of elmo1 in dock2-dependent lymphocyte migration. Journal of immunology. 192:6062-6070. Strochlic, T.I., J. Viaud, U.E. Rennefahrt, T. Anastassiadis, and J.R. Peterson. 2010. Phosphoinositides are essential coactivators for p21-activated kinase 1. Mol Cell. 40:493-500. Sun, D., J. Zhang, J. Xie, W. Wei, M. Chen, and X. Zhao. 2012. MiR-26 controls LXR- dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS letters. 586:1472- 1479. Tague, S.E., V. Muralidharan, and C. D'Souza-Schorey. 2004. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A. 101:9671-9676. Takai, Y., T. Sasaki, and T. Matozaki. 2001. Small GTP-binding proteins. Physiological reviews. 81:153-208. Thompson, G., D. Owen, P.A. Chalk, and P.N. Lowe. 1998. Delineation of the Cdc42/Rac-binding domain of p21-activated kinase. Biochemistry. 37:7885-7891. Torii, T., Y. Miyamoto, A. Sanbe, K. Nishimura, J. Yamauchi, and A. Tanoue. 2010. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem. 285:24270-24281. Torres, V.A., and D.G. Stupack. 2011. Rab5 in the regulation of cell motility and invasion. Current protein & peptide science. 12:43-51. Vadlamudi, R.K., F. Li, L. Adam, D. Nguyen, Y. Ohta, T.P. Stossel, and R. Kumar. 2002. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol. 4:681-690. Venkateswarlu, K., F. Gunn-Moore, J.M. Tavare, and P.J. Cullen. 1999. EGF-and NGF- stimulated translocation of cytohesin-1 to the plasma membrane of PC12 cells requires PI 3-kinase activation and a functional cytohesin-1 PH domain. J Cell Sci. 112 ( Pt 12):1957-1965. Venkateswarlu, K., P.B. Oatey, J.M. Tavare, and P.J. Cullen. 1998. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol. 8:463-466. Wang, J., J.M. Dai, Y.L. Che, Y.M. Gao, H.J. Peng, B. Liu, H. Wang, and H. Linghu. 2014. Elmo1 helps dock180 to regulate Rac1 activity and cell migration of ovarian cancer. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 24:844-850. Wei, S.M., C.G. Xie, Y. Abe, and J.T. Cai. 2009. ADP-ribosylation factor like 7 (ARL7) interacts with alpha-tubulin and modulates intracellular vesicular transport. Biochemical and biophysical research communications. 384:352-356. Wennerberg, K., K.L. Rossman, and C.J. Der. 2005. The Ras superfamily at a glance. J Cell Sci. 118:843-846. Yamauchi, J., Y. Miyamoto, T. Torii, R. Mizutani, K. Nakamura, A. Sanbe, H. Koide, S. Kusakawa, and A. Tanoue. 2009. Valproic acid-inducible Arl4D and cytohesin- 2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells. Experimental cell research. 315:2043-2052. Yan, J., A. Manaenko, S. Chen, D. Klebe, Q. Ma, B. Caner, M. Fujii, C. Zhou, and J.H. Zhang. 2013. Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage. Stroke; a journal of cerebral circulation. 44:1410-1417. Yeung, T., G.E. Gilbert, J. Shi, J. Silvius, A. Kapus, and S. Grinstein. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 319:210- 213. Zenke, F.T., C.C. King, B.P. Bohl, and G.M. Bokoch. 1999. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem. 274:32565-32573. Zhao, Z.S., J.P. Lim, Y.W. Ng, L. Lim, and E. Manser. 2005. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 20:237-249. Zhao, Z.S., E. Manser, X.Q. Chen, C. Chong, T. Leung, and L. Lim. 1998. A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol. 18:2153-2163. Zhao, Z.S., E. Manser, and L. Lim. 2000a. Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation. Mol Cell Biol. 20:3906- 3917. Zhao, Z.S., E. Manser, T.H. Loo, and L. Lim. 2000b. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol. 20:6354-6363. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18512 | - |
dc.description.abstract | ARL4 (ARF-Like 4) small G protein subfamily belongs to ADP-Ribosylation Factor (Komander et al.) of Ras small GTPase superfamily. ARL4 subfamily consists of ARL4A, ARL4C and ARL4D. Transient expression patterns of ARL4s have been reported responded to physiological conditions, such as embryonic development, tissue morphogenesis and stress. Recent studies show that ARL4s are regulators of cellular cytoskeleton and upstream of ARF6 signaling pathways. Cell migration participates in development of functional organ in embryonic development and systematic balance when adult. Coordination of multiple signaling pathways involving in cytoskeleton and membrane dynamics, cell adhesion and cell polarity are required for promoting cell migration. In this study, we explore signaling pathways of ARL4A in membrane protrusion, cell adhesion and cell migration. We found ARL4A was mainly localized at membrane through both targeting signals of N-terminal myristoylation and C-terminal polybasic motif. ARL4A promoted membrane protrusion on fibronectin and increased cell spreading in nucleotide binding dependent manner. ARL4A also induced focal adhesion dynamics. Depletion of ARL4A affected focal adhesion morphology. It implies that ARL4A plays a role in cell migration. Our previous study shows that ELMO is ARL4A interacting protein. Interaction of ELMO with ARL4A through N-terminal Ras-binding domain (RBD) affects ARL4A-induced cell spreading and actin remodeling. Here, we identify p21-activating kinase (PAK) as novel interacting protein of ARL4A. Similar to ELMO-RBD interaction, ARL4A interacted with PAK through p21-binding domain (PBD), which is required for active Cdc42 and Rac1 binding. Expression of ARL4A promoted PAK/β-PIX /GIT1 complexes to membrane protrusion. Disruption β-PIX interaction and depletion PAK1 diminished ARL4A-induced membrane protrusion. Moreover, we found that residues R105 and K114 in the C-terminal PBD domain were required for ARL4A and PAK interaction. Replacement of R105 and K114 to alanine abolished ARL4A interaction and cell migration. Taken together, in this study, we reveal ARL4A function in membrane protrusion, cell adhesion and cell migration through interaction with PAK in integrin-mediated signaling pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:09:08Z (GMT). No. of bitstreams: 1 ntu-103-D96448010-1.pdf: 10803771 bytes, checksum: 6b3633a252b3fb4854f9a6776df9efa0 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Table of Contents
Table of Contents………………………………………………….................................………………..…….1 中文摘要 ……..……………………………………………….….…………………………..……..……..………4 Abstract…….………………………..……………………………………………………….……..….....………...5 Introduction 1. Small GTPases ……….………………………………...………………………………………….……….7 2. ADP-ribosylation factor family……...…………………......…………….……...…...……………….7 3. ARL4 (ADP-ribosylation factor-like 4) subfamily GTPases……………...…...…..……...10 4. The specificity of ARL4A 4.1. Transcriptional regulation……………………...……………..………………………...………11 4.2. Signaling for induction of ARL4A expression…………………………..………..……..12 5. ARL4 interaction protein 5.1. Importin-α ……………...…………..……………………...….....………….………………………13 5.2. ARF-GEF Cytohesin……………...………….…………………………………………………...13 5.3. Golgin GCC185…………………...………………………………….…………………………….14 6. Cell migration………………………..…………………………….………………………………….......14 7. ELMO/DOCK180 complex 7.1. Introduction…………...…………………………..………………………………………………….15 7.2. Protein structure of ELMO family………..………………….…….………………………...16 7.3. ELMO/DOCK180 complex in cell migration…………….….…….………..……….…..16 8. p21-activating protein (PAK) 8.1. Introduction ………………………....………………………………………………………………17 8.2. Protein structure of group I PAK……………………………………………...……………...17 8.3. Mechanism of group I PAK activation …………...…………….…………..……..…..…..18 8.4. Localization of group I PAK…………………………………………………..….……...…….19 8.5. p21-activating protein in cell migration…………………………...….…………..….....….20 8.6. p21-activating protein in focal adhesion dynamics ……………….........…………..….21 Materials and Methods……………………...………………...……………………………….…………….23 Results………………………………………...……………………..…………………………….……………...34 Discussion…………………………………………………..…...….………...………………….………….......47 Figures Figure 1: Localization of ARL4 family small GTPases. ……………..………………….………55 Figure 2: Cell spreading area decreases in ARL4A siRNA treated cells. ………..……......56 Figure 3: ARL4A induces membrane protrusion when cell spreading on fibronectin. ………………………………………………………………………………..................…….……………...……..57 Figure 4: The subcellular localization of ARL4A in cells spreading on fibronectin. …………………..………………………………………………………......................................58 Figure 5: Expression of active ARL4A affects focal adhesions. ………..…………..…...…...59 Figure 6: ARL4 expression affects focal adhesion morphology. ………………..…..……….60 Figure 7: Expression of ARL4A in human cancer cell lines……………………………………61 Figure 8: ARL4A is upregulated in cervical cancer cell C33A……………………………...…62 Figure 9: ARL4A and ARL4D are degraded after blockage of protein synthesis by cycloheximide…………………………………..………………………………………………………..…......63 Figure 10: Exogenous and endogenous ARL4A localize at membrane-enriched fractions…………………………………………………………………….…………………………….….……64 Figure 11: ARL4A depletion affects paxillin distribution. …………………..…………….……65 Figure 12: ARL4A is required for cell trans-migration toward fibronectin…………….….66 Figure 13: Overexpression of ARL4A promotes cell trans-migration toward fibronectin…..………………………………………………………………………………………….……..….67 Figure 14: ARL4A interacts with PAK p21-binding domain (PAK-PBD). ………..….….68 Figure 15: Mapping of the interaction region of ARL4A with PAK1. ..……………...........69 Figure 16: Active form of ARL4A interacts with PAK-PBD. ……………………………...…70 Figure 17: Different binding properties of ARL4A and Rac1 to PAK1…………………….71 Figure 18: Rac1 interaction with PAK-PBD in the presence of ARL4A in vitro.......…72 Figure 19: Identification of ARL4A-binding sites in PAK-PBD. ………………………..…...73 Figure 20: ARL4A-PAK1 interaction in vivo. …………………………………………………...…74 Figure 21: Nucleotide-binding defect of ARL4A does not enrich PAK1 to membrane protrusion. ……………………………………………………………………………………………………….75 Figure 22: ARL4A is co-localized with PAK1, b-PIX and GIT1 at ARL4A-induced membrane protrusion. ………………………………………………………………………………….……76 Figure 23: PAK1 deficient in b-Pix binding fails to be recruited to membrane by ARL4A. ……………………………………………………….……………………………………………….…77 Figure 24: PAK1 mutant deficient in ARL4A binding affects cell migration. ……….….78 Figure 25: Depletions of PAK1 and PAK2 show distinct effects in ARL4A-induced membrane protrusion. ………………………………………………………………...................................79 Reference …………………………………………...……………………………...……………………..…..…81 | |
dc.language.iso | en | |
dc.title | 探討腺嘌呤核苷二磷酸核醣化因子相似蛋白四 A之功能 | zh_TW |
dc.title | Functional Characterization of ADP-Ribosylation
Factor-Like Protein 4A (ARL4A) | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳瑞華,張智芬,陳鴻震,周祖述 | |
dc.subject.keyword | 鳥糞嘌呤核?三磷酸?,腺嘌呤核?二磷酸核醣化因子,腺嘌呤核?二磷酸核醣化因子相似蛋白四 A, | zh_TW |
dc.subject.keyword | small GTPases,ADP-ribosylation factor,ARL4, | en |
dc.relation.page | 90 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 10.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。