請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18505
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張惠婷(Hui-Ting Chang) | |
dc.contributor.author | En-Shao Kuo | en |
dc.contributor.author | 郭恩劭 | zh_TW |
dc.date.accessioned | 2021-06-08T01:08:45Z | - |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | 傅馨慧 (2013) 厚葉石斑木葉子抽出物對秀麗隱桿線蟲生命週期與耐熱性之影響。國立台灣大學生農學院森林環境暨資源學系碩士論文。第34-59頁。
劉業經、呂福原、歐辰雄 (1988) 台灣樹木誌。國立中興大學農學院叢書。第46-47及156-157頁。 鄭凱元 (2010) 以基因轉殖線蟲為模式探討具有抗阿茲海默症潛力之植物成分。國立台灣大學生物資源暨農學院食品科技研究所碩士論文。第47-53頁。 Abbas, S. and M. Wink (2010) Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 17: 902-909. Anthony, M. S., T. B. Clarkson, and J. K. Williams (1998) Effects of soy isoflavones on atherosclerosis: potential mechanisms. The American Journal of Clinical Nutrition 68: 1390-1393. Arendash, G. W., W. Schleif, K. Rezai-zadeh, E. K. Jackson, L. C. Zacharia, J. R. Cracchiolo, D. Shippy, and J. Tan (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 142: 941-952. Avramovich-Tirosh, Y., L. Reznichenko, T. Mit, H. Zheng, M. Fridkin, O. Weinreb, S. Mandel, and M. B. Youdim (2007) Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron-chelating-antioxidants, M-30 and green tea polyphenol, EGCG. Current Alzheimer Research 4: 403-411. Beatty, W.W., D. P. Salmon, N. Butters, W. C. Heindel, E. L. Granholm (1988) Retrograde amnesia in patients with Alzheimer’s disease or Huntington’s disease. Neurobiology of Aging 9: 181-186. Bush, A. I., W. H. Pettingell, G. Multhaup, M. Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters, R. E. Tanzi (1994) Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265 (5117): 1464-1467. Campion, D., C. Dumanchin, D. Hannequin, B. Dubois, S. Belliard, M. Puel, C. Thomas-Anterion, A. Michon, C. Martin, F. Charbonnier, G. Raux, A. Camuzat, C. Penet, V. Mesnage, M. Martinez, F. Clerget-Darpoux, A. Brice, and T. Frebourg (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. The American Journal of Human Genetics 65: 664-670. Cho, J. H. and G. V. Johnson (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. Journal of Neurochemistry 88: 349-358. Doraiswamy, P. M. and G. L. Xiong (2006) FBD used to improve learning and memory function of animals. Chinese Traditional and Herbal Drugs. 37: 1831-1835. Dostal, V., C. M. Roberts, and C. D. Link (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 186: 857-866. Drieu, K. (1989) Preparation and definition of Ginkgo biloba extract. Presse Medicale 15 (31): 1455-1457. Fay, D. S., A. Fluet, C. J. Johnson, and C. D. Link (1998) In vivo aggregation of beta-amyloid peptide variants. Journal of Neurochemistry 71: 1616-1625. Finkel, T. and N. J. Holbrook (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408 (6809): 239-247. Forstl, H., C. Besthorn, and C. Geiger-Kabisch (1993) Psychotic features and the course of Alzheimer's disease: relationship to cognitive, electroencephalographic and computerized tomography findings. Acta Psychiatrica Scandinavica 87: 395-399. Forstl, H. and W. Hewer (1993) Medical morbidity in Alzheimer’s disease. In A. Burns, eds. Ageing and Dementia, a Methodological Approach. Edward Arnold, London. Pp. 275-284. Forstl, H. and A. Kurz (1999) Clinical features of Alzheimer’s disease. European Archives of Psychiatry and Clinical Neurosciences 249: 288-290. Gami, M. S. and C. A. Wolkow (2006) Studies of Caenorhabditis elegans daf-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5: 31-37. Glenner, G. G. and C. W. Wong (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications 120: 885-890. Gong, C. X., F. Liu, I. Grundke-Iqbal, and K. Iqbal (2005) Post-translational modifications of tau protein in Alzheimer's disease. Journal of Neural Transmission 112: 813-838. Grunz, G., K. Haas, S. Soukup, M. Klingenspor, S. E. Kulling, H. Daniel, and B. Spanier (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mechanisms of Ageing and Development 133 (1): 1-10. Gutierrez-Zepeda, A., R. Santell, Z. Wu, M. Brown, Y. Wu, I. Khan, C. D. Link, B. Zhao, and Y. Luo (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BioMed Central Neuroscience 6: 54-62. Harvey, B. S., I. F. Musgrave, K. S. Ohlsson, A. Fransson, and S. D. Smid (2011) The green tea polyphenol (-)-epigallocatechin-3-gallate inhibits amyloid-β evoked fibril formation and neuronal cell death in vitro. Food Chemistry 129: 1729-1736. Hertweck, M., T. Hoppe, and R. Baumeister (2003) C. elegans, a model for aging with high-throughput capacity. Experimetal Gerontology 38: 345-346. Heymen, A., W. E. Wilkinson, B. J. Hurwitz, M. J. Helms, C. S. Haynes, C. M. Utley, and L. P. Gwyther (1987) Early-onset Alzheimer's disease: clinical predictors of institutionalization and death. Neurology 37:980-984. Irizarry, M. C., F. Soriano, M. MeNamara, K. J. Page, D. Schenk, D. Games, and B. T. Hyman (1997) A deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. The Journal of Neuroscience 17: 7053-7059. Jovanovic, S. V. and M. G. Simic (2000) Antioxidants in nutrition. Annals of the New York Academy of Sciences 889 (1): 326-334. Kaletta, T and M. O. Hengartner (2006) Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery 5: 387-398. Kampkotter, A., C. G. Nkwonkam, R. F. Zurawski, C. Timpel, Y. Chovolou, W. Watjen, and R. Kahl (2007) Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234: 113-123. Kawarabayashi, T., L. H. Younkin, T. C. Saido, M. Shoji, K. H. Ashe, and S. G. Younkin (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. The Journal of Neuroscience 21: 372-381. Kim, M. J. and S. J. Rhee (2004) Green tea catechins protect rats from microwave-induced oxidative damage to heart tissue. Journal of Medicinal Food 7 (3): 299-304. Lim, G. P., F. Yang, T. Chu, E. Gahtan, O. Ubeda, W. Beech, J. B. Overmier, K. Hsiao-Ashe, S. A. Frautschy, and G. M. Cole (2001) Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiology of Aging 22: 983-991. Lin, C. H., H. S. Chang, C. H. Liao, T. H. Ou, I. S. Chen, and I. L. Tsai (2010) Anti-inflammatory biphenyls and dibenzofurans from Rhaphiolepis indica. Journal of Natural Products 73: 1628-1631. Lin, C. H., H. S. Chang, H. R. Liao, I. S. Chen, and I. L. Tsai (2013) Triterpenoids from the roots of Rhaphiolepis indica var. tashiroi and their anti-inflammatory activity. Interantional Journal of Molecular Sciences 14: 8890-8898. Link, C. D. (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 92 (20): 9368-9372. Link, C. D., A. Taft, V. Kapulkin, K. Duke, S. Kim, Q. Fei, D. E. Wood, and B. G. Sahagan (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiology of Aging 24 (3): 397-413. Locher, C. P., M. T. Burch, H. F. Mower, J. Berestecky, H. Davis, B. Van Poel, A. Lasure, D. A. Vanden Berghe, and A. J. Vlietinck (1995) Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. Journal of Ethnopharmacology 49: 23-32. Lublin, A. L. and C. D. Link (2013) Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drugs Discovery Today Technologies 10 (1): 115-119. Luo, Y., J. V. Smith, V. Paramasivam, A. Burdick, K. J. Curry, J. P. Buford, I. Khan, W. J. Netzer, H. Xu. and P. Butko (2002) Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proceedings of the National Academy of Sciences of the United States of America 99: 12197-12202. Mandelkow, E. M. and E. Mandelkow (1998) Tau in Alzheimer's disease. Trends in Cell Biology 8 (11): 425-427. Marishka, K. B., J. L. Evans, and Y. Luo (2006) Beneficial effects of natural antioxidants EGCG and α -lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacology, Biochemistry and Behavior 85: 620-628. Mattson, M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiological Reviews 77: 1081-1132. Mattson, M. P. (2004) Pathways towards and away from Alzheimer’s disease. Nature 430: 631-639. Mello, C. C., J. M. Kramer, D. Stinchcomb, and V. Ambros (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO Journal 10: 3959-3970. Minniti, A. N., D. L. Rebolledo, P. M. Grez, R. Fadic, R. Aldunate, I. Volitakis, R. A. Cherny, C. Opazo, C. Masters, A. I. Bush, and N. C. Inestrosa (2009) Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Molecular Neurodegeneration 4 (2): 1-17. Murphy, P. A., E. Farmakalidis, and L. D. Johnson (1982) Isoflavone content of soya-based laboratory animal diets. Food and Chemical Toxicology 20: 315-317. Muyllaert, D., D. Terwel, P. Borghgraef, H. Devijver, I. Dewachter, and F. Van Leuven (2006) Transgenic mouse models for Alzheimer's disease: the role of GSK-3β in combined amyloid and tau-pathology. Revue Neurologique 162 (10): 903-907. Neve, R. L., P. Harris, K. S. Kosik, D. M. Kurnit, and T. A. Donlon (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Research 387 (3): 271-280. Nonaka, G. I., E. Ezakl, K. Hayshi, and I. Nishioka (1983) Flavanol glucosides from rhubarb and Rhaphiolepis umbellata. Phytochemistry 22 (7): 1659-1661. Pan, W., K. Ikeda, M. Takebe, and Y. Yamori, (2001) Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. Journal of Nutrition 131: 1154-1158. Patil, S. P., N. Tran, H. Geekiyanage, L. Liu, and C. Chan (2013) Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neuroscience Letters 554: 121-125. Perry, E. K., J. Kerwin, R. H. Perry, G. Blessed, A. F. Fairbairn (1990) Visual hallucinations and the cholinergic system in dementia. Journal of Neurology Neurosurgery and Psychiatry 53 (1): 88. Prvulovic, D and H. Hampel (2011) Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease. Clinical Chemistry and Laboratory Medicine 49 (3): 367-374. Reixach, N., E. Crooks, J. M. Ostresh, R. A. Houghten, and S. E. Blondelle (2000) Inhibition of beta-amyloid-induced neurotoxicity by imidazopyridoindoles derived from a synthetic combinatorial library. Journal of Structural Biology 130: 247-258. Rezai-Zadeh, K., G. W. Arendash, H. Hou, F. Fernandez, M. Jensen, M. Runfeldt, R. D. Shytle, and J. Tan (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Research 1214: 177-187. Saul, N., K. Pietsch, R. Sturzenbaum, and C. E. W. Steinberg (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hormesis. Journal of Gerontology 65 (6): 626-635. Selkoe, D. J. (1997) Alzheimer's disease: genotypes, phenotypes, and treatments. Science 275 (5300): 630-631. Sisodia, S. S. and P. H. St George-Hyslop (2002) γ-Secretase, notch, Aβ and Alzheimer’s disease: where do the presenilins fit in? Nature Reviews Neuroscience 3: 281-290. Stackman, R. W., F. Eckenstein, B. Frei, D. Kulhanek, J. Nowlin, and J. F. Quinn (2003) Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Experimental Neurology 184: 510-520. Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annual Review of Biochemistry 62: 797. Sun, A., X. V. Nguyen, and G. Bing (2002) Comparative analysis of an improved thioflavin-s stain, Gallyas silver stain, and immunohistochemistry for neurofibrillary tangle demonstration on the same sections. Journal of Histochemistry and Cytochemistry 50 (4): 463-472. Trobe, J. D., P. F. Waller, C. A. Cook-Flannagan, S. M. Teshima, and L. A. Bielianskas (1996) Crashes and violations among drivers with Alzheimer disease. Archives of Neurology 54: 411-416. Watanabe, K., S. M. Widyastuti, and F. Nonaka (1990) Two biphenyl compounds from Rhaphiolepis umbellata as its phytoalexin. Agricultural and Biological Chemistry 54 (7): 1861-1862. Weingarten, M. D., A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner (1975) A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences 72 (5): 1858-1862. Widyastuti, S. M., F. Nonaka, K. Watanabe, E. Maruyama, and N. Sako (1991) Accumulation and antifungal spectrum of rhaphiolepsin as a second new phytoalexin in Rhaphiolepis umbellata Makino. Japanese Journal of Phytopathology 57 (5): 641-648. Wu, Y., Z. Wu, P. Butko, Y. Christen, M. P . Lambert, W. L. Klein, C. D. Link, and Y. Luo (2006) Amyloid-β-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb761 and ginkgolides in transgenic Caenorhabditis elegans. The Journal of Neuroscience 26 (50): 13102-13113. Yao, Z. X., K. Drieu, and V. Papadopoulos (2001) The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from β-amyloid-induced cell death by inhibiting the formation of β-amyloid-derived diffusible neurotoxic ligands. Brain Research 889: 181-190. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18505 | - |
dc.description.abstract | 阿茲海默症 (Alzheimer's disease) 的主要病理特徵為β-類澱粉蛋白 (β-Amyloid, Aβ) 過量累積於患者腦部,不正常的Aβ聚集導致神經細胞凋亡。秀麗隱桿線蟲 (Caenorhabditis elegans) 為一種便利且能表現有機體複雜性之模式生物,因此本研究之目的為利用轉殖人類Aβ基因之秀麗隱桿線蟲CL4176及CL2120作為模式生物,評估厚葉石斑木 (Rhaphiolepis umbellata var. integerrima) 葉子乙醇抽出物及四個可溶部對基因轉殖線蟲麻痺率、體內羰基化蛋白質含量及Aβ生成之影響。
研究結果顯示乙醇抽出物及正己烷可溶部可減少基因轉殖線蟲CL4176麻痺率,效果較正對照組咖啡因佳,證實厚葉石斑木乙醇抽出物及正己烷可溶部可有效抑制線蟲體內Aβ之毒性。線蟲體內蛋白質羰基化分析則顯示,乙酸乙酯可溶部、正丁醇可溶部及高濃度正己烷可溶部能降低CL4176線蟲及CL2120線蟲體內羰基化蛋白質含量。基因轉殖線蟲CL2120的Aβ沉積數量分析顯示,正己烷可溶部隨著濃度增加,可以減少線蟲頭部之Aβ沉積數量。正己烷可溶部可減少CL4176線蟲及CL2120線蟲體內Aβ單體與寡聚體的生成量,且效果優於正對照組Epigallocatechin-3-gallate (EGCG)。綜合試驗結果顯示,厚葉石斑木葉子抽出物之正己烷可溶部,可以抑制基因轉殖線蟲體內Aβ的生成與毒性。 | zh_TW |
dc.description.abstract | The major symptom of Alzheimer's disease (AD) pathology is the accumulation of β-amyloid (Aβ) in the AD patients’ brain; Aβ aggregation may lead to neuronal cell death. Caenorhabditis elegans is a convenient animal model to express organismal complexity. Thus, the purposes of this study is to use human Aβ gene tranginic C. elegans CL4176 and CL2120 to evaluate the effect of leaf extract and four soluble fractions from Rhaphiolepis umbellata var. integerrima on paralyze rate, carbonylated proteins content and Aβ expression in transgenic C. elegans.
Results showed that the ethanolic extract and n-hexane soluble fraction reduced Aβ –induced paralysis in transgenic C. elegans CL4176, and its activity was much better than that of positive control, caffeine. It proved that the ethanolic extract and n-hexane soluble fraction from R. umbellata var. integerrima could inhibit Aβ toxicity in C. elegans. The analysis of carbonylated proteins showed that ethyl acetate soluble fraction, n-butanol soluble fraction, and higher concentration of n-hexane soluble fraction reduced carbonylated proteins in C. elegans CL4176 and CL2120. The analysis of Aβ deposits in transgenic C. elegans CL2120 revealed that n-hexane soluble fraction reduced Aβ deposits with the increasing concentration. Effect of n-hexane soluble fraction on decreasing Aβ monomers and Aβ oligomers in C. elegans CL4176 and CL2120 was superior than that of positive control, epigallocatechin-3-gallate (EGCG). According to these results, n-hxexane soluble fraction from R. umbellata var. integerrima could reduce Aβ expression and inhibit Aβ toxicity in transgenic C. elegans. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:08:45Z (GMT). No. of bitstreams: 1 ntu-103-R01625006-1.pdf: 3144640 bytes, checksum: 58cc5fcebb54a96a2de48e398fa1c144 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
摘要 I Abstarct II 目錄 III 表目錄 VII 圖目錄 IX 壹、前言 1 貳、文獻回顧 3 一、阿茲海默症之臨床特徵 3 (一) 隱藏期 3 (二) 早期 3 (三) 中期 3 (四) 晚期 4 二、阿茲海默症之機轉 4 (一) β-類澱粉胜肽與阿茲海默症之關係 4 (二) Tau蛋白與阿茲海默症之關係 6 三、秀麗隱桿線蟲作模式生物之優點 8 (一) 秀麗隱桿線蟲之特性 8 (二) 阿茲海默症轉殖線蟲之特性 10 四、植物天然物抗阿茲海默症潛力相關研究 13 (一) 銀杏抽出物EGb761 13 (二) EGCG 19 (三) 咖啡抽出物及咖啡因 23 (四) 大豆異黃酮類化合物 28 五、石斑木屬植物及其天然物成分與生物活性 31 (一) 石斑木屬植物 31 (二) 石斑木屬植物之天然物成分 31 (三) 石斑木屬植物之生物活性 34 1. 抗真菌活性 34 2. 抗病毒活性 36 3. 抗發炎活性 37 3. 抗氧化活性 39 參、材料與方法 41 一、試驗材料 41 (一) 試材 41 (二) 線蟲與菌種 41 1. 野生型線蟲 (N2) 41 2. 基因轉殖線蟲 41 3. 大腸桿菌 (Escherichia coli OP 50) 41 (三) 試驗藥品與溶劑 41 1. 藥品 41 2. 溶劑 42 3. 抗體 42 二、試驗方法 42 (一) 厚葉石斑木葉子抽出物萃取 42 1. 乙醇抽出物製備 42 2. 液相-液相分配 42 (二) 線蟲培養 43 1. E. coli OP50培養 43 2. NGM agar plate製備 43 3. E. coli OP50之NGM agar plate製備 43 4. 野生種及基因轉殖線蟲培養 43 5. 線蟲蟲卵分離及同齡化 44 6. 冷凍保存與解凍線蟲 44 7. 含試驗樣品之NGM agar plate製備 45 (三) 秀麗隱桿線蟲抗阿茲海默症之相關試驗 45 1. 基因轉殖線蟲CL4176麻痺試驗 45 2. 基因轉殖線蟲CL2120 Aβ沉積螢光染色分析 45 3. 線蟲蛋白質羰基化試驗 45 4. 線蟲體內Aβ含量分析 46 (四) 統計分析 47 肆、結果與討論 48 一、厚葉石斑木葉子乙醇抽出物及各可溶部對CL4176線蟲麻痺率之影響 48 二、乙醇抽出物及各可溶部對基因轉殖線蟲體內蛋白質羰基化之影響 51 (一) 對CL4176線蟲體內蛋白質羰基化之影響 51 (二) 對CL2120線蟲體內蛋白質羰基化之影響 57 三、乙醇抽出物及各可溶部對CL2120線蟲Aβ沉積數量之影響 62 四、乙醇抽出物及正己烷可溶部對基因轉殖線蟲體內Aβ單體與寡聚體之影響 67 (一) 對CL4176線蟲體內Aβ單體與寡聚體之影響 67 (二) 對CL2120線蟲體內Aβ單體與寡聚體之影響 72 伍、結論 79 陸、參考文獻 80 表目錄 表 1. 表現人類Aβ之基因轉殖線蟲 (Lublin and Link, 2013) 12 Table 1. Caenorhabditis elegans transgenic strains expressing human Aβ 12 表 2. 銀杏抽出物對Aβ誘導CL4176麻痺之PT50 (Wu, 2006) 15 Table 2. The PT50 value of extract of Ginkgo biloba on Aβ-induced paralysis in transgenic C. elegans CL4176 15 表 3. Tg2576小鼠額葉皮質之β-類澱粉蛋白測定 (Stackman et al., 2003) 17 Table 3. Determination of β-amyloid levels in frontal cortex of Tg2576 mice 17 表 4. Rhaphiolepsin對真菌孢子萌發及菌絲成長之影響 (Widyastuti et al., 1991) 34 Table 4. Effect of Rhaphiolepsin on the germination and hyphal growth of fungi 34 表 5. Rhaphiolepsin 和4'-Methoxyaucuparin對Pestalotiopsis sp.及Botrytis cinerea真菌孢子萌發之影響 (Widyastuti et al., 1991) 35 Table 5. Eeffect of rhaphiolepsin and 4'-methoxyaucuparin on the spore germination rate (%) of Pestalotiopsis sp. and Botrytis cinerea 35 表 6. 植物抽出物的抗病毒活性與細胞毒性 (Locher et al., 1995) 37 Table 6. Anti-viral activity and cell toxicity of plant extracts 37 表 7. 田代氏石斑木根部化合物抑制fMLP誘導產生超氧陰離子之IC50 (Lin et al., 2010; Lin et al., 2013) 38 Table 7. IC50 values for the isolates of roots of Rhaphiolepis indica var. tashiroi in the inhibition on N-formyl-methionyl-leucyl-phenylalanine-(fMLP)-induced superoxide generation 38 表 8. 厚葉石斑木葉子乙醇抽出物及各可溶部之DPPH自由基清除能力IC50值與總抗氧化能力 (傅馨慧,2013) 40 Table 8. IC50 value of DPPH free radical scavenging activities and TEAC value of leaf ethanolic extract and fractions of Rhaphiolepis umbellata var. integerrima 40 表 9. 乙醇抽出物及各可溶部對CL4176線蟲於25℃麻痺率 (%) 之影響 49 Table 9. Effect of ethanolic extract and fractions on paralysis rate (%) of C. elegans CL4176 at the temperature of 25℃ 49 表 10. 正己烷可溶部及EGCG對CL4176線蟲於25℃麻痺率 (%) 之影響 50 Table 10. Effect of n-hexane soluble fraction and EGCG on paralysis rate (%) of C. elegans CL4176 at the temperature of 25℃ 50 表 11. 乙醇抽出物及各可溶部對CL2120線蟲Aβ沉積數量之影響 63 Table 11. Effect of ethanolic extract and fractions on Aβ deposits in C. elegans CL2120 63 圖目錄 圖 1. 類澱粉前驅蛋白質之降解途徑 (Sisodia and St George-Hyslop, 2002) 6 Fig. 1. Proteolysis of amyloid precursor protein. 6 圖 2. Tau蛋白之聚集 (Mandelkow and Mandelkow, 1998) 7 Fig. 2. Accumulation of tau. 7 圖 3. 成熟雌雄同體及雄性線蟲之解剖結構圖 9 Fig. 3. Anatomy of an adult hermaphrodite and male. 9 圖 4. Caenorhabditis elegans的生命週期 10 Fig. 4. Life cycle of Caenorhabditis elegans. 10 圖 5. 以抗體標定基因轉殖線蟲頭部之Aβ (Lublin and Link, 2013) 12 Fig. 5. Anterior regions of transgenic Caenorhabditis elegans probed for Aβ. 12 圖 6. EGb761對Aβ1-42誘導PC12細胞凋亡之影響 (Yao et al., 2001) 14 Fig. 6. Protective effects of EGb761 on Aβ1-42-induced toxicity in PC12 cells. 14 圖 7. 銀杏化合物對基因轉殖線蟲CL4176體內Aβ之影響 (Wu et al., 2006) 16 Fig. 7. Effects of compounds from Ginkgo biloba on Aβ content in transgenic C. elegans CL4176. 16 圖 8. Ginkgo biloba抽出物對Tg2576小鼠於Morris水迷宮空間定位學習之影響(Stackman et al., 2003) 18 Fig. 8. Effect of Ginkgo biloba extract on spatial learning of Morris water maze in Tg2576 mice. (A) Escape latency; (B) Cumulative distance to platform 18 圖 9. Ginkgo biloba抽出物對Tg2576小鼠於Morris水迷宮空間記憶之影響(Stackman et al., 2003) 18 Fig. 9. Effect of Ginkgo biloba extract on spatial memory of Morris water maze in Tg2576 mice. (A) Distance to platform; (B) Search ratio 18 圖 10. EGCG對Aβ1-40誘導PC12細胞凋亡之影響 (Harvey et al., 2011) 20 Fig. 10. Effects of EGCG on Aβ1-40-induced toxicity in PC12 cells. 20 圖 11. EGCG對轉殖線蟲CL2006體內Aβ生成之影響 (Abbas and Wink, 2010) 21 Fig. 11. Effects of EGCG on Aβ in transgenic Caenorhabditis elegans CL2006. 21 圖 12. EGCG對Tg2576小鼠腦部可溶與不可溶Aβ1-40及Aβ1-42之影響 (Rezai-Zadeh et al., 2008) 22 Fig. 12. The effect of EGCG on soluble and insoluble Aβ1-40, Aβ1-42 in Tg2576 mice. (A) Soluble Aβ1-40,42; (B) Insoluble Aβ1-40,42 22 圖 13. EGCG對Tg2576小鼠於Radial arm水迷宮工作記憶之影響 (Rezai-Zadeh et al., 2008) 23 Fig. 13. The effect of EGCG on working memory of radial arm water maze in Tg2576 mice. (A) The last block of testing; (B) On the final day of testing 23 圖 14. Caffeine對Tg2576小鼠海馬迴可溶Aβ1-40及不可溶Aβ1-42之影響 (Arendash et al., 2006) 24 Fig. 14. The effect of Caffeine on soluble Aβ1-40 and insoluble Aβ1-42 in hippocampus of Tg2576 mice. 24 圖 15. Caffeine對Tg2576小鼠於Morris水迷宮空間記憶之影響 (Arendash et al., 2006) 24 Fig. 15. The effect of caffeine on spatial memory of Morris water maze in Tg2576 mice. (A) Escape latency; (B) Time in quadrant 24 圖 16. 咖啡抽出物及Caffeine對Aβ誘導基因轉殖線蟲CL4176麻痺之影響 (Dostal et al., 2010) 26 Fig. 16. The effect of coffee extracts and caffeine on Aβ-induced paralysis in transgenic Caenorhabditis elegans CL4176. 26 圖 17. 咖啡抽出物對基因轉殖線蟲CL4176體內Aβ之影響 (Dostal et al., 2010) 27 Fig. 17. The effect of coffee extracts on Aβ in transgenic Caenorhabditis elegans CL4176. (A) Western blot of Aβ species; (B) Quantification of Aβ. 27 圖 18. Glycitein、Daidzein及Genistein對Aβ誘導基因轉殖線蟲CL4176麻痺之影響 (Gutierrez-Zepeda et al., 2005) 29 Fig. 18. Effect of glycitein, daidzein, and genistein on Aβ-induced paralysis in transgenic Caenorhabditis elegans CL4176. (A) Thioflavin S staining; (B) Quantification of Aβ deposits 29 圖 19. Glycitein、Daidzein及Genistein對基因轉殖線蟲CL2006體內Aβ沉積之影響 (Gutierrez-Zepeda et al., 2005) 30 Fig. 19. Effects of glycitein, daidzein, and genistein on Aβ deposits in transgenic Caenorhabditis elegans CL2006. 30 圖 20. 厚葉石斑木中Flavanol glycosides的化學結構式 (Nonaka et al., 1983) 32 Fig. 20. Structures of flavanol glycosides from Rhaphiolepis umbellata var. integerrima. 32 圖 21. 真菌感染之厚葉石斑木中Biphenyls的化學結構式 (Watanabe et al., 1990) 32 Fig. 21. Structures of biphenyls from fungus-infected of Rhaphiolepis umbellata var. integerrima. 32 圖 22. 田代氏石斑木中Triterpenoids的化學結構式 (Lin et al., 2013) 33 Fig. 22. Structures of triterpenoids from Rhaphiolepis indica var. tashiroi. 33 圖 23. 厚葉石斑木葉子乙醇抽出物及各可溶部之還原力評估 (傅馨慧,2013) 40 Fig. 23 Reducing power of leaf ethanolic extract and its fractions of Rhaphiolepis umbellata var. integerrima. 40 圖 24. 以西方墨點法分析咖啡因處理對CL4176線蟲在25℃下蛋白質羰基化之影響 52 Fig. 24. Result of carbonylated proteins in caffeine treated C. elegans CL4176 at the temperature of 25℃ by western blot. 52 圖 25. 以西方墨點法分析乙醇抽出物及各可溶部處理對CL4176線蟲在25℃下蛋白質羰基化之影響 53 Fig. 25. Result of carbonylated proteins in ethanolic extract and fractions treated C. elegans CL4176 at the temperature of 25℃ by western blot. 53 圖 26. 乙醇抽出物及各可溶部對CL4176線蟲在25℃下蛋白質羰基化之影響 54 Fig. 26. Effect of ethanolic extract and fractions on carbonylated proteins of C. elegans CL4176 at the temperature of 25℃. 54 圖 27. 以西方墨點法分析咖啡因及正己烷可溶部處理之CL4176線蟲在25℃下蛋白質羰基化之影響 (A) 咖啡因;(B) 正己烷可溶部 55 Fig. 27. Result of carbonylated proteins in caffeine and n-hexane soluble fraction treated C. elegans CL4176 at the temperature of 25℃ by western blot. 55 圖 28. 咖啡因及正己烷可溶部對CL4176線蟲在25℃下蛋白質羰基化之影響 56 Fig. 28. Effect of caffeine and n-hexane soluble fraction on carbonylated proteins of C. elegans CL4176 at the temperature of 25℃. 56 圖 29. 以西方墨點法分析乙醇抽出物及各可溶部處理之CL2120線蟲蛋白質羰基化之影響 58 Fig. 29. Result of carbonylated proteins in ethanolic extract and fractions treated C. elegans CL2120 by western blot. 58 圖 30. 乙醇抽出物及各可溶部對CL2120線蟲蛋白質羰基化之影響 59 Fig. 30. Effect of ethanolic extract and fractions on carbonylated proteins of C. elegans CL2120. 59 圖 31. 以西方墨點法分析咖啡因及正己烷可溶部處理之CL2120線蟲蛋白質羰基化之影響 60 Fig. 31. Result of carbonylated proteins in caffeine and n-hexane soluble fraction treated C. elegans CL2120 by western blot. 60 圖 32咖啡因及正己烷可溶部對CL2120線蟲在蛋白質羰基化之影響 61 Fig. 32. Effect of caffeine and n-hexane soluble fraction on carbonylated proteins of C. elegans CL2120. 61 圖 33. 餵食乙醇抽出物及各可溶部CL2120線蟲Aβ沉積數量之顯微圖 64 Fig. 33. Microscopic pictures of ethanolic extract and fractions on Aβ deposits in C. elegans CL2120. 64 圖 34. 正己烷可溶部對CL2120線蟲Aβ沉積數量之影響 65 Fig. 34. Effect of n-hexane soluble fraction on Aβ deposits in C. elegans CL2120. 65 圖 35. 餵食正己烷可溶部CL2120線蟲Aβ沉積數量之顯微圖 66 Fig. 35. Microscopic pictures of n-hexane soluble fraction on Aβ deposits in C. elegans CL2120. 66 圖 36. 以西方墨點法分析乙醇抽出物及正己烷可溶部處理對CL4176線蟲Aβ proteins之影響 68 Fig. 36. Result of Aβ proteins in ethanolic extract and n-hexane soluble fraction treated C. elegans CL4176 by western blot. 68 圖 37. 乙醇抽出物及各可溶部處理對CL4176線蟲Aβ之影響 68 Fig. 37. Effect of ethanolic extract and fractions on Aβ of C. elegans CL4176. 68 圖 38. 正己烷可溶部對CL4176線蟲Aβ單體 (4 kDa) 之影響 69 Fig. 38. Effect of n-hexane soluble fraction on Aβ monomers (4 kDa) of C. elegans CL4176. 69 圖 39. 正己烷可溶部對CL4176線蟲Aβ寡聚體 (12-20 kDa) 之影響 70 Fig. 39. Effect of n-hexance soluble fraction on Aβ oligomers (12-20 kDa) of C. elegans CL4176. 70 圖 40. EGCG對CL4176線蟲Aβ單體 (4 kDa) 之影響 71 Fig. 40. Effect of EGCG on Aβ monomers (4 kDa) of C. elegans CL4176. 71 圖 41. EGCG對CL4176線蟲Aβ寡聚體 (12-20 kDa) 之影響 72 Fig. 41. Effect of EGCG on Aβ oligomers (12-20 kDa) of C. elegans CL4176. 72 圖 42. 以西方墨點法分析乙醇抽出物及正己烷可溶部處理對CL2120線蟲Aβ proteins之影響 73 Fig. 42. Result of Aβ proteins in ethanolic extract and n-hexane soluble fraction treated C. elegans CL2120 by western blot. 73 圖 43. 乙醇抽出物及正己烷可溶部處理對CL2120線蟲Aβ之影響 74 Fig. 43. Effect of ethanolic extract and n-hexane soluble fraction on Aβ of C. elegans CL2120. 74 圖 44. 正己烷可溶部對CL2120線蟲Aβ單體 (4 kDa) 之影響 75 Fig. 44. Effect of n-hexane soluble fraction on Aβ monomers (4 kDa) of C. elegans CL2120. 75 圖 45. 正己烷可溶部對CL2120線蟲Aβ寡聚體 (12-20 kDa) 之影響 76 Fig. 45. Effect of n-hexane soluble fraction on Aβ oligomers (12-20 kDa) of C. elegans CL2120. 76 圖 46. EGCG對CL2120線蟲Aβ單體 (4 kDa) 之影響 77 Fig. 46. Effect of EGCG on Aβ monomers (4 kDa) of C. elegans CL2120. 77 圖 47. EGCG對CL2120線蟲Aβ寡聚體 (12-20 kDa) 之影響 78 Fig. 47. Effect of EGCG on Aβ oligomers (12-20 kDa) of C. elegans CL2120. 78 | |
dc.language.iso | zh-TW | |
dc.title | 厚葉石斑木葉子抽出物對基因轉殖秀麗隱桿線蟲β-類澱粉蛋白生成之影響 | zh_TW |
dc.title | Effects of Leaf Extract from Rhaphiolepis umbellata var. integerrima on β-Amyloid Formation in Transgenic Caenorhabditis elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張上鎮(Shang-Tzen Chang),王升陽(Sheng-Yang Wang),許富蘭(Fu-Lan Hsu),葉汀峰(Ting-Feng Yeh) | |
dc.subject.keyword | 阿茲海默症,β-類澱粉蛋白,秀麗隱桿線蟲,羰基化蛋白質,抽出物,厚葉石斑木, | zh_TW |
dc.subject.keyword | β-Amyloid,Caenorhabditis elegans,Carbonylated proteins,Extract,Rhaphiolepis umbellata var. integerrima, | en |
dc.relation.page | 86 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。