請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18499
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慶源(Ching-Yuan Chang) | |
dc.contributor.author | Zang-Sei Hung | en |
dc.contributor.author | 洪臧燮 | zh_TW |
dc.date.accessioned | 2021-06-08T01:08:24Z | - |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | 1. Adani, F., D. Baido, E. Calcaterra, and P. Genevini, (2002). Genevini, The influence of biomass temperature on biostabilization–biodrying of municipal solid waste, Bioresource Technology, 83(3), 173-179.
2. Arena, U., M.L. Mastellone and F. Perugini, (2003). The environmental performance of alternative solid waste management options: A life cycle assessment study, Chem. Eng. J., 96(1-3), 207-222. 3. Arvanitoyannis, I.S. and T.H. Varzakas, (2008). Vegetable Waste Management: Treatment Methods and Potential Uses of Treated Waste, Waste Management for the Food Industries, Academic press , Philadelphia, PA, pp. 703-761. 4. Bailey, R.A., H.M. Clark, J.P. Ferris, S. Krause and R.L. Strong, (2002). Strong, Solid waste disposal and recycling, Chemistry of the Environment (Second Edition), 769-792. 5. Baines, J. and M. Peet, (1983). Assessing alternative liquid fuels using net energy criteria, Energy, 8(12), 963-972. 6. Bender, M., (1999) Economic feasibility review for community-scale farmer cooperatives for biodiesel, Bioresour. Technol, 70(1), 81–87. 7. Björk H. and A. Rasmuson, (2002). A method for life cycle assessment environmental optimisation of a dynamic process exemplified by an analysis of an energy system with a superheated steam dryer integrated in a local district heat and power plant, Chemical Engineering Journal, 87(3), 381-394. 8. Bovea, M.D., V. Ibáñez-Forés, A. Gallardo and F.J. Colomer-Mendoza, (2010). Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study, Waste Management, 30(11), 2383-2395. 9. Canackci, M. and J.V. Gerpen, (2003) A pilot plant to produce biodiesel from high free fatty acid feed stocks. Trans. ASAE, 46(3), 945–954. 10. CE (Chemical Engineering), (2001) Chemical Engineering Economic Indicators, 108(7), p. 138. 11. Chuang, G. L., (2007) A study on the influences of biodiesel in use for diesel vehicle on engine performance and characteristics of exhaust in Taiwan. Master Thesis, Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan. 12. Cleary, J., (2009). Life cycle assessments of municipal solid waste management systems: A comparative analysis of selected peer-reviewed literature, Environment International, 35(8), 1256-1266. 13. Consonni, S., M. Giugliano and M. Grosso, (2005a). Alternative strategies for energy recovery from municipal solid waste: Part A: Mass and energy balances, Waste Management, 25(2), 123-135. 14. Consonni, S., M. Giugliano and M. Grosso, (2005b). Alternative strategies for energy recovery from municipal solid waste: Part B: Emission and cost estimates, Waste Management, 25(2), 137-148. 15. Defra (Department for Environment, Food and Rural Affairs). (2005). Mechanical Biological Treatment & Mechanical Heat Treatment of Municipal Solid Waste, pp. 6-8. 16. Eley, M.H. and C.C. Holloway, (1988). Treatment of municipal solid wastes by steam classification for recycling and biomass utilization. Applied Biochemistry and Biotechnology, 17(1), 125-135. 17. Eley, M.H., (1994). An improved prototype apparatus and process for separating cellulosic materials from municipal solid waste. Applied Biochemistry and Biotechnology, 45-46(1), 69-79. 18. Eley, M.H., G.R. Guinn and J. Bagchi, (1995). Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals. Applied Biochemistry and Biotechnology, 51-52(1), 387-397. 19. Eley, M.H., Method for transforming diverse pulp and paper products into a homogenous cellulosic feedstock. US Patent 6,306,248 BI, filed in 1997, granted in 2001 20. Estech (Estech Europe Ltd.), 2009, http://www.polymercluster.co.uk/company.php?page=direct&id=339 (accessed in September 2009). 21. Faaij A.P.C. (2006). Bio-energy in Europe: changing technology choices, Energy Policy, 34(3), 322-342. 22. Farrell, A.E., R.J. Plevin, B.T. Turner, A.D. Jones, M. O’Hare and D.M. Kammen, (2006). Ethanol can contribute to energy and environmental goals, Science, 311(5760), 506-508. 23. Garg, A., R. Smith, D. Hill, N. Simms and S. Pollard, (2007). Wastes as co-fuels: The policy framework for solid recovered fuel (SRF) in Europe, with UK implications. Environ. Sci. Technol., 41(14), 4868-4874. 24. Giampietro, M., S. Ulgiati and D. Pimental, (1997). Feasibility of large-scale biofuel production, Bioscience, 47(9), 587-600. 25. Giugliano, M., M. Grosso, and L. Rigamonti, (2008). Energy recovery from municipal waste: A case study for a middle-sized Italian district, Waste Management, 28(1), 39-50. 26. Gregg, J.S., (2010). National and regional generation of municipal residue biomass and the future potential for waste-to-energy implementation, Biomass and Bioenergy, 34(3), 379-388. 27. Haas, M.J., A. J. McAloon, W.C. Yee and T.A. Foglia, (2006) A process model to estimate biodiesel production costs. Bioresour. Technol., 97(4), 671–678. 28. Hammerschlag, R., (2006). Ethanol’s energy return on investment: a survey of the literature 1990-present, Environ. Sci. Tech., 40(6), 1744-1750. 29. He, P., J. Tang, D. Zhang, Y. Zeng and L. Shao, (2010). Release of volatile organic compounds during bio-drying of municipal solid waste, Journal of Environmental Sciences, 22(5), 752-759. 30. Holloway, C.C. and E. Brooks, Process for separating and recovering organics and inorganics from waste material. US patent 4,342,830, filled in 1981, granted in 1982. 31. Holloway, C.C., Process for treating municipal solid waste. US Patent 4,540,495, filed in 1984, granted in 1985. 32. Huang, S.H., A study on the production processes and costs of biodiesel. Master Thesis, Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan, 2007. 33. Huang, Y. F., P.T. Chiueh, F.S. Syu and S.L. Lo, (2013). Life cycle assessment of biochar cofiring with coal. Bioresource Technology, 131, 166-171. 34. Hung, Z.S., C.C. Chang, C.F.H. Chang, Y.C. Wang, C.Y. Chang, D.R. Ji, J.Y. Tseng, C.H. Ko, Y.H. Chen, J.L. Shie, Y.S. Li, S.G. Wang, K.W. Liu and S.L. Tseng, (2012). Autoclaving of waste plastics-free papers for the resource recovery and reutilization. Fresenius Enironmental Bulletin, 21(8c), 2486-2493. 35. Hung, Z.S., C.C. Chang, C.F.H. Chang, Y.S. Lin, D.R. Ji, C.Y. Chang, J.Y Tseng, S.W. Chiang, J.L. Shie, Y.H. Chen, C.H. Ko and Y.S. Li, (2013). Autoclaving treatment of wasted disposable bamboo chopsticks. J. Taiwan Inst. Chem. Eng., 44(6), 1010-1015. 36. ISO (International Organization for Standardization), (1997). Environmental management–life cycle assessment–principles and framework, ISO 14040, Geneva. 37. ISO, (2006). Environmental management- life cycle assessment - principles and framework. International Standard ISO 14040. ISO, Geneva. 38. Kaditi, E.A., (2009). Bio-energy policies in a global context, Journal of Cleaner Production, 17(1), S4-S8. 39. Kim, D., S. Shin, S. Sohn, J. Choi and B. Ban, (2002). Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies, Journal of Hazardous Materials, 94(3), 213-222. 40. Klass, L.D., Biomass for Renewable Energy, Fuels and Chemicals; Academic Press: New York, 1998; pp. 1–2. 41. Leahy, J.G., K.D. Tracy and M.H. Eley, (2003). Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria. Biotechnology Letters, 25(6), 479-483. 42. Leahy, J.G., T.E. Carrington and M.H. Eley, (2004). Analysis of volatile and semivolatile hydrocarbons recovered from steam-classified municipal solid waste. J. Environ. Qual., 33(4), 1556-1561. 43. Longcake, R., (2007). Waste Treatment Technologies, City of Bradford Metropolitan District Council, p. 8, West Yorkshire, UK. 44. Luoranen, M. and M. Horttanainen, (2008). Co-generation based energy recovery from municipal solid waste integrated with the existing energy supply system, Waste Management, 28(1), 30-38. 45. Matteson, G.C. and B.M. Jenkins, (2007). Food and Processing Residues in California: Resource Assessment and Potential for Power Generation. Biores. Technol, 98(16), 3098-3105. 46. Münnich, K., C.F. Mahler and K. Fricke, (2006). Pilot project of mechanical-biological treatment of waste in Brazil, Waste Management, 26(2), 150-157. 47. Nelson, R. G. and M.D. Schrock, (1993). Energetic and economic feasibility associated with the production, processing and conversion of beef tallow to diesel fuel. Proceedings of the First Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, National Renewable Energy Laboratory (NREL), Golden, CO, Vol. 2, pp. 848–862. 48. Nelson, R.G., S. A. Hower and J.A. Weber, Potential feedstock supply and costs for biodiesel production. Bioenergy 1994, Proceedings of the Sixth National Bioenergy Conference, Reno/Sparks, NV, 1994. 49. Noordam, M. and R.V. Withers, Producing biodiesel from canola in the inland northwest: An economic feasibility study. Idaho Agricultural Experiment Station Bulletin Number 785, University of Idaho College of Agriculture, Moscow, ID, 1996; p. 12. 50. Orchid (Orchid Environmental Ltd.), (2009). Natural Resource Substitution through Sustainable Recycling and Recovery, http://www.orchid-environmental.co.uk/process/index.php (accessed in September 2009). 51. Papadimitriou, E.K., J.R. Barton and E.I. Stentiford, (2008). Sources and levels of potentially toxic elements in the biodegradable fraction of autoclaved non-segregated household waste and its compost/digestate. Waste Management, 26(5), 419-430. 52. Papageorgiou, A., J.R. Barton and A. Karagiannidis, (2009). Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: A case for England. J. Environ. Manage., 90(10), 2999-3012. 53. Papadimitriou, E.K., (2010). Hydrolysis of organic matter during autoclaving of commingled household waste. Waste Management, 30(4), 572-582. 54. Pimentel, D., (2003). Ethanol fuels: Energy balance, economics, and environmental impacts are negative, Nat. Resour. Res., 12(2), 127-134. 55. Pradhan, A., D.S. Shrestha, J. Van Gerpen and J. Duffield, (2008). The energy balance of soybean oil biodiesel production: a review of past studies, Transactions of the ASABE, 51(1), 185-194. 56. Spath, P.L. and M.K. Mann, (2000). Life cycle assessment of a natural gas combined‐cycle power generation system, NREL/TP‐570‐27715. Golden, Colo.: National Renewable Energy Laboratory. 57. Stentiford, E., P.G. Hobbies, J.R. Barton, Z. Wang and C.J. Banks, (2010). Evaluating the Effects of Autoclaving on the Rate of Bioprocessing of Biodegradable Municipal Waste. Technology Research and Innovation Fund Project Report, pp. 1-35. 58. Sterecycle, Clean Recycling Technology, http://www.sterecycle.com/process.htm (accessed in September 2009). 59. Sugni, M., E. Calcaterra and F. Adani, (2005). Biostabilization–biodrying of municipal solid waste by inverting air-flow, Bioresource Technology, 96(12), 1331-1337. 60. TEPA (Environmental Protection Administration of Taiwan), 2009. Properties of Municipal Solid Waste in Env. Statistics. Taipei, Taiwan. http://www.epa.gov.tw/en/statistics/c4020.pdf (accessed August 10, 2010). 61. Turton, R., R.C. Bailie, W.B. Whiting and J.A. Shaeiwitz, (1998). Analysis, Synthesis, and Design of Chemical Processes; Prentice Hall PTR: Upper Saddle River, NJ, Chapters 1–3. 62. Tyner, G., R. Costanza and R. Fowler, (1988). The net energy yield of nuclear power, Energy, 13(1), 73-81. 63. Udo de Haes, H.A. and R. Heijungs, (2007). Life-cycle assessment for energy analysis and management, Applied Energy, 84(7-8), 817-827. 64. Ulrich, G.D., (1984). A Guide to Chemical Engineering Process Design and Economics; John Wiley and Sons: New York, Chapters 5 and 6. 65. Unnikrishnan, S. and A. Singh, (2010). Energy recovery in solid waste management through CDM in India and other countries, Resources, Conservation and Recycling, 54(10), 630-640. 66. Van Dyne, D.L., J.A. Weber and C.H. Braschler, (1996) Macroeconomic effects of a community base biodiesel production system, Bioresour. Technol, 56(1), 1–6. 67. Wang, L., G. Hu, X. Gong and L. Bao, (2009). Emission reductions potential for energy from municipal solid wastes incineration in Chongqing, Renewable Energy, 34(9), 2074-2079. 68. Weber, J.A., (1993). The economic feasibility of community-based biodiesel plants. Master’s Thesis, University of Missouri, Columbia, MO. 69. You, Y.D., J.L. Shie, C.Y. Chang, S.H. Huang, C.Y. Pai, Y.H. Yu and C.H. Chang, (2008) Economic Cost Analysis of Biodiesel Production: Case in Soybean Oil, Energy Fuels, 22(1), 182-189. 70. Zhang, Y., M.A. Dube, D.D. McLean and M. Kates, (2003a) Biodiesel production from waste cooking oil, 1: Process design and technological assessment. Bioresour Technol, 89(1), 1-16. 71. Zhang Y., M.A. Dube, D.D. McLean and M. Kates, (2003b) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol., 90(3), 229–240. 72. 工程會(行政院公共工程委員會),2011,「新興個別工程計畫各階段工程計畫及經費估算之專業有關作業流程」,http://www.pcc.gov.tw/pccap2/BIZSfront/upload/article/g01 (1).doc(摘錄於2011年1月)。 73. 王文堯,2007,「廚餘能源化處理之生命週期評估」,國立臺北大學自然資源與環境管理研究所碩士論文。 74. 王彥棋,2011,「應用蒸煮程序處理都市廢棄物及其生質物回收再利用之研究」,國立臺灣大學環境工程學研究所碩士論文。 75. 王美茹、駱尚廉、闕蓓德、李念勳,(2012/1),專章「以微波誘發農林廢棄物焙燒技術之研究」於「節能減碳與新能源技術」;駱尚廉、郭靜、趙林主編,曉園出版社。 76. 王寧沂,2012「下水污染碳化之生命週期評估」,國立臺灣大學環境工程學研究所碩士論文。 77. 中華民國統計資訊網,2011,http://www.stat.gov.tw/mp.asp?mp=4(摘錄於2011年1月)。 78. 中興工程(中興工程顧問股份有限公司),2010,「高效能生質氣化試驗設施建造評估規劃計畫期末報告」。 79. 中興工程,2011,「垃圾焚化廠轉型生質能源中心可行性評估規劃專案工作計畫(第二年)期末報告」。 80. 江玄政、黃國恭、黃雪娟,2001,「生命週期評估技術與應用手冊-ISO 14000 系」,經濟部工業局。 81. 司洪濤、呂冠霖、黃香玫,「氧化技術在高濃度COD廢水處理之應用」http://proj.moeaidb.gov.tw/eta/tech/techKnow.asp?HnfiysWJtYX68s43uopfOsWj,產業製程清潔生產與綠色技術資訊網,財團法人台灣產業服務基金會 (摘錄於2011年3月)。 82. 李育明,2008,「EuP 輔導人員訓練課程-生命週期簡介」,經濟部工業局。 83. 呂奎宛,2010,「虛擬電廠策略之整合性環境評估」,國立臺灣大學環境工程學研究所碩士論文。 84. 呂冠霖、司洪濤,「高濃度COD廢水氧化處理技術評析」http://proj.moeaidb.gov.tw/eta/tech/techKnow.asp?HnfiysWJtYX68s43uopfOsWj,產業製程清潔生產與綠色技術資訊網,財團法人台灣產業服務基金會(摘錄於2011年3月)。 85. 呂靜雯,2006,「生命週期評估結合風險評估應用於政策環評以一般廢棄物跨區焚化處理為例」,國立臺灣大學環境工程學研究所碩士論文。 86. 林彥妤,2012,「殘餘生質物再利用之能源潛勢與生命週期評估」,國立臺灣大學環境工程學研究所碩士論文。 87. 利澤焚化廠,宜蘭利澤焚化廠網頁,2011,http://www.yiland.com.tw/page/no_02.asp (摘錄於2011年2月)。 88. 洪文宗,2009,赴歐美考察「生質廢棄物高效能前處理及氣化技術與設施」心得報告,環境檢驗電子報,第十五期,環保署環檢所。 89. 陳仕愷,2013,「柳杉生質燃料及生質炭利用之生命週期評估」,國立臺灣大學環境工程學研究所碩士論文。 90. 陳綺萱,2009,「稻稈廢棄物轉製第二代生質燃料能源生命週期分析」,國立宜蘭大學環境工程學系碩士論文。 91. 許富翔、闕蓓德、林彥妤、王寧沂,2011,稻稈焙燒產製生質碳之生命週期評估。中華民國環境工程學會 2011 環境規劃與管理研討會。NSC100-ET-E-002-009-ET。 92. 黃勝鉉,2006,「生質柴油生產程序與成本之研究 」,國立臺灣大學環境工程學研究所碩士論文。 93. 郭春寶,2009,「都市生活垃圾蒸煮處理」,國立中正大學機械工程學系研究報告。 94. 農委會(行政院農業委員會),2009,Agricultural Statistics Yearbook. Council of Agriculture, Taipei, Taiwan. 95. 張家驥、洪臧燮、何瓊芳、謝哲隆、李元陞、陳奕宏、洪文宗、張慶源,2010,「新一代垃圾資源永續管理方案芻議與評析」,永續產業發展雙月刊,48期,pp. 51-59。 96. 張家驥、王彥棋、洪臧燮、江勝偉、張慶源、李元陞、謝哲隆、陳綺萱、陳奕宏、何瓊芳,2011,「以蒸煮技術轉製廢棄物衍生生質碳燃料」,工程,第84期,pp. 40-48。 97. 張智淵,2006,「生質能之生命週期評估-以甘蔗提煉燃料酒精為例」,國立臺北大學自然資源與環境管理研究所碩士論文。 98. 楊英賢,2008,「生命週期評估與不確定性分析應用於火力電廠與燃料選擇」國立成功大學環境工程學系博士論文。 99. 楊起鵬,2013,「都市生活廢棄物生質纖維製造與應用生命週期評估 」,國立臺灣大學環境工程學研究所碩士論文。 100. 萬皓鵬,李宏台,2010,「廢棄物衍生燃料的使用」,工業技術研究院能源與環境研究所,科學發展,450期,pp. 34-43。 101. 臺電(臺灣電力公司),2010,「臺灣電力公司永續報告書」,臺灣電力公司,台灣台北 。 102. 臺電,2014,「台電燃煤採購績效」http://www.taipower.com.tw/content/new_info/new_info-a14.aspx?LinkID=1 (2014年07月摘錄)。 103. 能源局(經濟部能源局),2013,中華民國101 年能源統計手冊Energy Statistics。 104. 劉彥蘭,2004,「全球環經社綜合評估指標系統綜述」,全球變遷通訊雜誌,第43期,pp. 25-p32。 105. 賴朝明、柯光瑞,2009,「臺灣廚餘再利用之發電、節能及二氧化碳減量潛力」,生質能源產業發展現況理論與實務(林憲秋、楊盛行、李昆達、鍾竺均等編),國立台灣大學農業化學系,pp. 201-211 。 106. 駱尚廉、蕭代基,2007,「環境經濟分析」,曉園出版社有限公司。 107. 環保署(環境保護署),2010,環保統計資料庫「執行機關資源回收成果統計」,http://210.69.101.110/WEBSTATIS/webindex.htm (摘錄於2010年8月)。 108. 環保署,2013,環保統計資料庫「廢棄物管理年報:垃圾清理概況」, http://www.epa.gov.tw/ch/DocList.aspx?unit=24&clsone=501&clstwo=178&clsthree=172&busin=4177&path=9540 (2013年10月摘錄)。 109. 環保署,2014,環境品質資料倉儲系統, http://edw.epa.gov.tw/reportStatisticT.aspx(摘錄於2014年7月)。 110. 環檢所(環境保護署環境檢驗所),2004,NIEA R124.00C,「一般廢棄物(垃圾)採樣方法」。 111. 環檢所,2006,NIEA R125.02C,「一般廢棄物(垃圾)檢測方法總則」。 112. 環檢所,2011a,「垃圾蒸煮分選技術評估計畫期末報告」。 113. 環檢所,2011b,「生質物低溫裂解產製固體替代燃料試驗設施建置計畫期末報告」。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18499 | - |
dc.description.abstract | 自從人類聚落都市化以來,垃圾(即都市廢棄物) (municipal solid waste, MSW)處理就成為都市問題中非常重要的課題。人們對於MSW的厭惡,不僅在於它的外觀,更會因為MSW中所包含的有機物質,使得MSW中的細菌大量滋生,並發出腐敗的臭味,讓人產生不舒服感。因此尋找有效又經濟的MSW處理技術,就成為一個非常受關切的議題。近年來由於化石燃料的短缺,使能源問題也受到高度的重視。本研究主要的目的正是為了同時解決這兩個問題;將都市廢棄物MSW進行蒸煮-機械分選處理,總稱機械熱處理(簡稱蒸煮),從產物中分離出有用的生質纖維(bio-fiber, BF),再把這些生質纖維進行乾燥及造粒之後,製造成生質纖維衍生燃料碇(bio-fiber derived fuel, BFDF);甚至再進行焙燒(torrefaction)製成生質纖維衍生生質炭(簡稱生質炭) (bio-fiber derived biochar, BFBC)。使用MSW製成的生質纖維衍生燃料BFDF,不但可以解決目前MSW直接焚化處理所產生的污染問題,同時利用混燒的方式,可以減少目前對於化石燃料的依賴性與使用量。
在實驗室的紙類蒸煮試驗中發現,半纖維素比纖維素更容易因蒸煮而水解斷裂,且隨著溫度的升高水解的效果越好,讓整個產物更容易進行後續的加工或研磨。在實驗室的竹筷蒸煮試驗中,隨著溫度越高,產物的能源緻密度(energy desification)會提高,但是熱值也會隨著時間越長而降低。在模廠規模的蒸煮試驗也發現有相似的結果。 經濟評估的結果顯示,當MSW蒸煮處理規模過小時,處理費過高;但當處理達一定規模後即具有降低MSW處理費之經濟效益。例如:若蒸煮產物生質纖維BF未出售且不計處理費,則當蒸煮處理規模為142.5公噸MSW /日(25% MSW處理量)時,MSW蒸煮處理費用約為1,275元/公噸;如果規模達到285公噸MSW /日(50% MSW處理量),則MSW蒸煮處理費用為1,196元/公噸;如果規模達到427.5公噸MSW /日(75% MSW處理量),則MSW蒸煮處理費用可降至1,165元/公噸。若再將產物BF製成BFDF出售,則可將前述規模的MSW蒸煮至製成BFDF之處理費(淨成本)分別降至881元/公噸、802元/公噸與772元/公噸,遠低於MSW焚化處理費用1,667元/公噸。但是如果再進行焙燒處理製成生質纖維衍生生質炭BFBC並出售,則處理每公噸MSW由蒸煮至製成BFBC之淨成本會變成3166元、3087元及3057元,費用幾乎是直接焚化處理的兩倍左右。因此如非必要,將產物處理至BFDF為最具有經濟效益的。若未來此BFDF之使用者可以扣抵碳稅,甚至取得碳交易權,必可同時解決MSW處理與能源問題,又有其附加的經濟效益。 蒸煮產物產製BFDF及BFBC的生命週期盤查分析結果顯示,當MSW蒸煮溫度為155℃,時間為60 min,產製BFBC的焙燒過程(由BFDF至BFBC)所消耗的能量為6.16 MJ/kg MSW,較產製BFDF (由BF至BFDF)的1.76 MJ/kg MSW及BF (由MSW至BF)的0.39 MJ/kg MSW高,導致製作BFBC對環境的各項影響衝擊皆大於BFDF。 生命週期分析探討了蒸煮溫度為155℃,時間為60 min之四種MSW蒸煮(S1-S4)情境及焚化(S9)並加以比較。S1及S2產製BFDF,但分別使用再生能源(ER)及電力公司(EP)之電力;S3及S4則產製BFBC,使用之電力分別來自ER及EP。結果顯示,單一化得點點數排序由低至高為S1、S9、S3、S2及S4,其點數分別為6.94E-05、9.72E-05、1.52E-04、1.89E-04及3.83E-04 Pt (points)。無論產品為前面任何一項,以再生能源做為製程電力來源所造成的環境衝擊,皆會小於使用市電(台灣電力公司,台電)。所以MSW機械熱處理的最適方式為將MSW進行蒸煮-機械分選處理,製成BFDF,過程中使用的電力為再生能源所產生的。 | zh_TW |
dc.description.abstract | Since urbanization of human settlements, the problem of disposal of municipal solid waste (MSW) has been one of the important issues of city. People detest MSW not only because of its appearance but also its decayed smell which make people feel uncomfortable. The reason why MSW has decayed smell is that it contains organics producing a large number of becteria. Therefore, finding an efficient and economic MSW treatment method has been deeply concerned. In addition, the energy problem has also been paid much attention to these years due to the shortage of fossil fuel. The objective of the study is to solve these two problems at the same time. By autoclaving-mechanical separation (noted as mechanical heat treatment or briefly as autoclaving) of MSW, the available bio-fiber (BF) can be separated from the waste. Then the BF can be made into bio-fiber refuse derived fuel (BFDF) after drying and granulating. The BFDF can even become bio-fiber derived bio-char (BFBC) through torrefaction. Utilizing BFDF and BFBC can not only solve the pollution problem of incinerating MSW directly but also reduce the dependence on fossil fuel and the amount of it uesd.
In the experiment of autoclaving paper in the laboratory, hemicellulose hydrolyses and breaks more easily than cellulose does through autoclaving. The effect of hydrolysis is better with the higher temperature, which can make the whole product proceed manufacturing or grinding more easily. As for the experiments of autoclaving bamboo chopsticks in the laboratory, the densification of energy of the product rises with the higher temperature, but the heat value lowers with the longer processing time. The results are similar to the pilot-scale autoclaving experiments. The calculation of economic assessment shows the results that the treatment fee is higher when the scale of the MSW autoclaved is smaller. However, there are economic benefits in terms of reducing the treatment fee of MSW when the scale gets a certain level. For example, if the product of BF is not sold and its treatment fee is not counted, the fee of autoclaving MSW is about 1,275 NT dollars per ton MSW when the scale is 142.5 tons MSW per day (25% of scale of total MSW). The fee of autoclaving MSW reduces to about 1,196 NT dollars per ton MSW when the scale is 285 tons MSW per day (50% of scale of total MSW). The fee of autoclaving MSW further decreases to about 1,165 NT dollars per ton MSW when the scale is 427.5 tons MSW per day (75% of scale of total MSW). If the products are sold in the form of BFDF, the fee of autoclaving-to-producing BFDF from MSW are respectively reduced to about 881, 802 and 772 NT dollars per ton of MSW, which are far lower than the fee of incineration of MSW of 1,667 NT dollars per ton MSW. But if the BFDF is further torrefied to products of BFBC and sold, the net costs are respectively 3,166, 3,087 and 3,075 NT dollars per ton of MSW, which are about twice as much as the fee of incinerating MSW directly. In consequence, if there is no need, it has the most economic benefits to make the products become BFDF. It can slove the problems of dealing with MSW and energy shortage simultaneously. Further more, it would give extra economic benefits, if people who use BFDF in the future can have deductible carbon tax or even can gain the carbon trade right. From the life cycle inventory of three treatment processes, namely, (1) from MSW to BF (Process 1 or P1), (2) MSW to BF then to BFDF (Process 2 or P2) and (3), MSW to BF to BFDF and then to BFBC (Process 3 or P3), the results reveal that the consumption of energy in making BFBC from BFDF (Stage 3 or SG3) is higher than those in making BFDF from BF (Stage 2 or SG2) and BF from MSW (Stage 1 or SG1). For example, as for the case of autoclaving at 155℃ and 60 min, the respective energy consumptions are 6.16, 1.76 and 0.39 MJ per kg MSW, for Stages 3, 2 and 1. Further, the life cycle assessments of four scenarios of autoclaving of MSW at 155℃ for 60 min (S1 to S4) are compared to that of incireration (S9). S1 and S2 produce BFDF using electricities from renewable energy (ER) and power company (EP), while S3 and S4 manufacture BFBC employing electricities from ER and EP, respectively. The results indicate that the single sores from the lowest to highest are S1, S9, S3, S2 and S4 of 6.94E-05, 9.72E-05, 1.52E-04, 1.89E-04 and 3.83E-04 Pt (points), respectively. In the above assessments, the impact on the environment using renewable energy electricity from incineration plant is lower than that using home electricity from power company as an energy resource. Moreover, S1 induces the lowest environmental impact. Hence, the proper choice of mechanical heat treatment of MSW is autoclaving the MSW to make BFDF using renewable energy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:08:24Z (GMT). No. of bitstreams: 1 ntu-103-D97541008-1.pdf: 10878595 bytes, checksum: 187e12cdbf1d5e805cf74285ff2e8388 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 摘要 i
目錄 vi 圖目錄 viii 表目錄 xi 符號說明與英文縮寫對照 xii 第一章 前言 1 1.1 研究緣起及目的 1 1.2 研究內容 4 第二章 文獻回顧 6 2.1 機械熱處理 6 2.2 機械熱處理的優缺點 9 2.3 機械熱處理技術運用案例 11 2.4 國外先進國家蒸煮相關技術及專利地圖分析 14 2.5 生命週期評估 20 第三章 研究方法 24 3.1 研究流程 26 3.2 研究步驟 28 3.3經濟評估研究方法 40 3.4都市廢棄物蒸煮系統生命週期評估研究方法 48 第四章 結果與討論 53 4.1蒸煮試驗 53 4.2蒸煮系統各情境分析 62 4.3二氧化碳收支與能耗分析 63 4.4都市廢棄物蒸煮經濟評估 64 4.5都市廢棄物蒸煮系統生命週期評估 72 第五章 結論與建議 114 5.1結論 114 5.2建議 117 參考文獻 118 附錄A. 蒸煮系統設計之質量與能量均衡計算 A-1 附錄B.蒸煮前後各廢棄物基本性質分析 B-1 附錄C.蒸煮系統情境分析 C-1 附錄D. 二氧化碳收支與能耗分析(EROI計算) D-1 附錄E. 30分鐘與60分鐘蒸煮情境比較 E-1 圖目錄 圖1-1 機械熱處理流程圖 5 圖2-1 專利分佈百分比圖 19 圖2-2 各年度專利公開數量圖 19 圖2-3 生命週期評估架構圖 21 圖3-1 研究執行流程圖 27 圖3-2 實驗室蒸煮反應器示意圖 30 圖3-3 小型迴轉式蒸煮反應器示意圖 30 圖3-4 迴轉式蒸煮反應爐設計圖 32 圖3-5 迴轉式蒸煮反應系統照片 33 圖3-6 蒸煮試驗流程 37 圖3-7 廢棄物採樣分析 38 圖3-8 廢棄物蒸煮程序 39 圖3-9新興個別工程計畫各階段工程計畫及經費估算之專業有關作業流程 41 圖3-10計畫成本組成架構圖 41 圖3-11系統邊界圖 51 圖3-12生質纖維衍生性燃料生命週期盤查分析 52 圖4-1試驗用紙類三成分分析 54 圖4-2蒸煮前後的重量損失率 54 圖4-3蒸煮前後的可燃分損失率 55 圖4-4衛生紙蒸煮前後的纖維素與半纖維重量損失率 55 圖4-5塑膠類採樣照片 58 圖4-6塑膠類蒸煮之昇溫曲線 58 圖4-7塑膠類蒸煮之昇壓曲線 58 圖4-8都市廢棄物採樣照片 60 圖4-9都市廢棄物蒸煮之昇溫曲線 61 圖4-10都市廢棄物蒸煮之昇壓曲線 61 圖4-11都市廢棄物蒸煮後之產物 61 圖4-12各處理規模費用比較圖 70 圖4-13情境1各製程階段特徵化結果 75 圖4-14情境1各製程階段環境衝擊 76 圖4-15情境1各製程階段標準化結果 77 圖4-16情境1各製程階段單一化結果 78 圖4-17情境2各製程階段特徵化結果 79 圖4-18情境2各製程階段環境衝擊 80 圖4-19情境2各製程階段標準化結果 81 圖4-20情境2各製程階段單一化結果 82 圖4-21情境3各製程階段特徵化結果 83 圖4-22情境3各製程階段環境衝擊 84 圖4-23情境3各製程階段標準化結果 85 圖4-24情境3各製程階段單一化結果 86 圖4-25情境4各製程階段特徵化結果 87 圖4-26情境4各製程階段環境衝擊 88 圖4-27情境4各製程階段標準化結果 89 圖4-28情境4各製程階段單一化結果 90 圖4-29情境1~4與傳統焚化法比較特徵化結果 91 圖4-30情境1~4與傳統焚化法比較環境衝擊 92 圖4-31情境1~4與傳統焚化法比較標準化結果 93 圖4-32情境1~4與傳統焚化法比較單一化結果 94 圖4-33情境1~8與傳統焚化法比較特徵化結果 97 圖4-34情境1~8與傳統焚化法比較環境衝擊 99 圖4-35情境1~8與傳統焚化法比較標準化結果 101 圖4-36情境1~8與傳統焚化法比較單一化結果 103 圖4-37情境1~8產生1 MJ能源特徵化結果 106 圖4-38情境1~8產生1 MJ能源環境衝擊 108 圖4-39情境1~8產生1 MJ能源標準化結果 110 圖4-40情境1~8產生1 MJ能源單一化結果 112 表目錄 表2-1 1998年至2013年間都市廢棄物之物理化學組成成分表 7 表2-2 臺灣平均每人每日都市廢棄物量 8 表2-3 國外蒸煮技術利用現況 13 表2-4 先進國家相關專利申請情況 15 表3-1 迴轉式蒸煮爐規格 31 表3-2 廢棄物成份分析方法 35 表3-3 廢棄物蒸煮條件 36 表3-4 2010年利澤焚化廠營運月報表 44 表3-5各高級處理技術之比較項目 47 表4-1竹筷實驗室蒸煮測試結果 57 表4-2蒸煮處理規模為模廠及50%都市廢棄物量(285公噸)之相關費用估算表 67 表4-3蒸煮處理規模為25%及75%都市廢棄物量之相關費用估算表 68 表4-4台電100~ 102年度燃煤採購價格 69 表4-5情境1~情境8與焚化特徵化結果比較表 98 表4-6情境1~情境8與焚化環境衝擊比較表 100 表4-7情境1~情境8與焚化標準化比較表 102 表4-8情境1~情境8與焚化單一化比較表 104 表4-9情境1~情境8產生1 MJ能源特徵化結果比較表 107 表4-10情境1~情境8產生1 MJ能源環境衝擊比較表 109 表4-11情境1~情境8產生1 MJ能源標準化結果比較表 111 表4-12情境1~情境8產生1 MJ能源單一化結果比較表 113 | |
dc.language.iso | zh-TW | |
dc.title | 都市廢棄物機械熱處理程序之生命週期分析 | zh_TW |
dc.title | Life-cycle Assessment of Mechanical Heat Treatment Process for the Municipal Solid Waste | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 馬鴻文(Hwong-Wen Ma),楊萬發(Wan-Fa Yang),柯淳涵(Chun-Han Ko),章裕民(Yu-Min Chang) | |
dc.subject.keyword | 都市廢棄物,蒸煮,機械分選,生質纖維燃料碇,生質炭,生命週期評估,經濟評估, | zh_TW |
dc.subject.keyword | Municipal solid waste,autoclaving,mechanical separation,bio-fiber refuse derived fuel,bio-char,life cycle assessment,economic assessment, | en |
dc.relation.page | 168 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 10.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。