請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | |
| dc.contributor.author | Chien-Ju Chen | en |
| dc.contributor.author | 陳建儒 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:08:14Z | - |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 1. Bye, G.C. 1999. Portland cement: composition, production and properties. Thomas Telford.
2. Kelham, S. “The effect of cement composition and fineness on expansion associated with delayed ettringite formation.” Cement and Concrete Composites 1996. 18(3): 171-179. 3. Huntzinger, D.N.; Eatmon, T.D. “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies.” Journal of Cleaner Production 2009. 17(7): 668-675. 4. Jones, M.R.; McCarthy, M.J.; Newlands M.D. “Fly ash route to low embodied CO2 and implications for concrete construction.” World of Coal Ash Conference, Denver, Colorado, USA. 2011. 5. Zhao, F.Q. “Activated fly ash/slag blended cement.” Resources, Conservation and Recycling 2007. 52(2): 303-313. 6. Singh, R.P.; Singh, H. “Characterization and comparison of treated and untreated rich hush ash & fly ash for metal matrix composites.” Journal of Metallurgy and Materials Science 2011. 53(2): 189-196. 7. Ramezanianpour, A.A.; Malhotra, V.M. “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume.” Cement and Concrete Composites 1995. 17(2): 125-133. 8. 行政院農業委員會,2013,民國101年 農業廢棄物排放量,http://agrstat.coa.gov.tw/sdweb/public/common/CommonStatistics.aspx,農業統計資料查詢。 9. Chandrasekhar, S. “Review processing, properties and applications of reactive silica from rice husk—an overview.” Journal of Materials Science 2003. 38(15): 3159-3168. 10. Ephraim, M.E.; Akeke, G.A.; Ukpata, J.O. “Compressive strength of concrete with rice husk ash as partial replacement of ordinary Portland cement.” Scholarly Journal of Engineering Research 2012. 1(2): 32-36. 11. Ganesan, K.; Rajagopal, K.; Thangavel, K. “Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete.” Construction and Building Materials 2008. 22(8): 1675-1683. 12. Ramezanianpour, A.A.; Mahdi khani M.; Ahmadibeni G. “The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concretes.” International Journal of Civil Engineering 2009. 7(2): 83-91. 13. Givi, A.N. “Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete.” Construction and Building Materials 2010. 24(11): 2145-2150. 14. Salas, A. “Comparison of two processes for treating rice husk ash for use in high performance concrete.” Cement and Concrete Research 2009. 39(9): 773-778. 15. Saraswathy, V.; Song, H.W. “Corrosion performance of rice husk ash blended concrete.” Construction and Building Materials 2007. 21(8): 1779-1784. 16. Ismail, M.S.; Waliuddin, A.M. “Effect of rice husk ash on high strength concrete.” Construction and Building Materials 1996. 10(7): 521-526. 17. Chao-Lung, H.; Anh-Tuan B.L.; Chun-Tsun, C. “Effect of rice husk ash on the strength and durability characteristics of concrete.” Construction and Building Materials 2011. 25(9): 3768-3772. 18. Sakr, K. “Effects of silica fume and rice husk ash on the properties of heavy weight concrete.” Journal of materials in civil engineering 2006. 18(3): 367-376. 19. Safiuddin, M.; West J.S.; Soudki, K.A. “Hardened properties of self-consolidating high performance concrete including rice husk ash.” Cement and Concrete Composites 2010. 32(9): 708-717. 20. Rodriguez de Sensale, G. “Strength development of concrete with rice-husk ash.” Cement and Concrete Composites 2006. 28(2): 158-160. 21. Chindaprasirt, P.; Rukzon, S. “Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar.” Construction and Building Materials 2008. 22(8): 1601-1606. 22. Van Tuan, N. “The study of using rice husk ash to produce ultra high performance concrete.” Construction and Building Materials 2011. 25(4): 2030-2035. 23. Chungsangunsit, T.; Gheewala, S.H.; Patumsawad, S. “Emission assessment of rice husk combustion for power production.” World Acad Sci Eng Technol 2009. 53: 1070-5. 24. King, D. “The effect of silica fume on the properties of concrete as defined in concrete society report 74, cementitious materials.” 37th Conference on our world in concrete and structures, Singapore. 2012. 25. Zhang, M.H.; Malhotra, V.M. “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete.” Cement and Concrete Research 1995. 25(8): 1713-1725. 26. Khedr, S.A.; Abou-Zeid, M.N. “Characteristics of silica-fume concrete. ” Journal of materials in civil engineering 1994. 6(3): 357-375. 27. Poon, C.S.; Kou, S.C.; Lam, L. “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete.” Construction and Building Materials 2006. 20(10): 858-865. 28. Zain, M.F.M.; Safiuddin, M.; Mahmud, H. “Development of high performance concrete using silica fume at relatively high water–binder ratios.” Cement and Concrete Research 2000. 30(9): 1501-1505. 29. Chatveera, B.; Lertwattanaruk, P. “Durability of conventional concretes containing black rice husk ash.” Journal of Environmental Management 2011. 92(1): 59-66. 30. Mazloom, M.; Ramezanianpour, A.A.; Brooks, J.J. “Effect of silica fume on mechanical properties of high-strength concrete.” Cement and Concrete Composites 2004. 26(4): 347-357. 31. Behnood, A.; Ziari, H. “Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures.” Cement and Concrete Composites 2008. 30(2): 106-112. 32. Dotto, J.M.R. “Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars.” Cement and Concrete Composites 2004. 26(1): 31-39. 33. Bhanja, S.; Sengupta, B. “Influence of silica fume on the tensile strength of concrete.” Cement and Concrete Research 2005. 35(4): 743-747. 34. Bhanja, S.; Sengupta, B. “Investigations on the compressive strength of silica fume concrete using statistical methods.” Cement and Concrete Research 2002. 32(9): 1391-1394. 35. Sabir, B.B. “Mechanical properties and frost resistance of silica fume concrete.” Cement and Concrete Composites 1997. 19(4): 285-294. 36. Nochaiya, T.; Wongkeo, W.; Chaipanich, A. “Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete.” Fuel 2010. 89(3): 768-774. 37. 鐘彬楊. “Structure and property characterization of oyster shell cementing material.” 結構化學 2012. 31(1): 85-92. 38. Yang, E.-I. “Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete.” Construction and Building Materials 2010. 24(5): 758-765. 39. Etuk, B.R.; Etuk, I.F.; Asuquo, L.O. “Feasibility of Using Sea Shells Ash as Admixtures for Concrete.” Journal of Environmental Science and Engineering 2012. 1(1): 123-129. 40. Yang, E.-I. “Long-term performance evaluation of concrete utilizing oyster shell in lieu of fine aggregate.” Journal of the Korea Concrete Institute 2003. 15(2): 280-287. 41. Malhotra, V.M.; Mehta, P.K. Pozzolanic and cementitious materials. Vol. 1. 1996. 42. Yu, Q. “The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product.” Cement and Concrete Research 1999. 29(1): 37-43. 43. Dunstan, E. “How does pozzolanic reaction make concrete green? ” World of Coal Ash (WOCA) Conference-May 9-12, Denver, CO, USA. 2011. 44. Toutanji, H. “Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. ” Cement and Concrete Research 2004. 34(2): 311-319. 45. Wild, S.; Khatib, J.M.; Jones, A. “Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete.” Cement and Concrete Research 1996. 26(10): 1537-1544. 46. Mori, D.; Yamada, K. “A review of recent applications of EPMA to evaluate the durability of concrete.” Journal of Advanced Concrete Technology 2007, 5(3): 285-298. 47. 黃兆龍,2007,《卜作嵐混凝土使用手冊》,財團法人中興工程顧問社。 48. 黃兆龍,1997,《混凝土性質與行為》,詹氏書局。 49. 黃兆龍,廖肇昌,1993,《圖解式混凝土品質控制試驗》,詹氏書局。 50. 國家標準檢索系統,http://www.cnsonline.com.tw/。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18496 | - |
| dc.description.abstract | 農田水路提供農田灌溉所需用水,其結構穩定性相當重要,傳統水路以土堤作為建材,優點為可就地取材相當方便,但會有崩塌以及滲漏的疑慮,因此現今許多灌溉渠道為了方便整治,大多採用三面光混凝土建造方式,為現今在台灣農田水路常看到的施工做法。混凝土為以水泥,水,粗、細骨材,以適當比例攪拌,隨時間硬化而成的建築材料,和一般土堤渠道相比,其結構堅固,且不易滲漏,是能提供穩定輸水的材料。然而水泥在生產過程中,會排放大量的二氧化碳,且骨材也需自大自然開採而得,對環境皆造成不良影響,因此本研究在尋找其他可替代水泥以及骨材的材料,其研究對象以農業以及工業廢棄物為主,除了減少對環境的破壞,又可解決廢棄物處理問題,並研究所開發的混凝土材料的工作度,希望能達到兼顧強度和施工便利性,增加材料的應用性。 | zh_TW |
| dc.description.abstract | Farmland waterway transports water for agricultural irrigation. The stability is important. In former times, earth was used to build the channel for irrigation. The advantage is that earth is conveniently obtained. The disadvantage is that it may collapse or cause the leakage of water. Therefore, concrete is commonly used to build channel nowadays. The advantage is that it is firm and hardly cause leakage.
Concrete is made up by mixing water, cement, fine aggregate, coarse aggregate together with certain ratio. However, the production of cement will generate carbon dioxide. The extraction of aggregate would destroy natural environment. Therefore, in this research, agricultural and industrial wastes are used to substitute cement and aggregate. It not only solves the problem of the disposal of waste but also prevents from the destruction to the environment. Furthermore, the slump and compressive strength are both studied to make the green concrete more applicable. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:08:14Z (GMT). No. of bitstreams: 1 ntu-103-R01524021-1.pdf: 6933184 bytes, checksum: 0ffe2cfca0b92ec24a8978fb620762a3 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1. Introduction 1
1.1. Cement 1 1.2. Rice Husk Ash 2 1.3. Silica fume 2 1.4. Oyster shell 3 1.5. Pozzolanic materials 4 2. Experimental design 6 2.1. Flow chart 6 2.2. Material 6 2.2.1. Rice Husk Ash 6 2.2.2. Silica fume 10 2.2.3. Oyster shell 10 2.2.4. Aggregate 13 2.2.5. Cement 14 2.2.6. Water 15 2.2.7. Characteristic Test Item of Material 15 2.2.8. The result of Characteristic Test of Material 20 2.3. Ratio design 32 2.4. Characteristic Test Item of concrete 38 3. Discussion 43 3.1. Compressive strength 43 3.2. Slump 56 3.3. Water absorption 63 3.4. Bulk density 70 3.5. Chloride content 77 3.6. pH value 79 3.7. Taguchi Methods 80 4. Conclusion 96 5. Reference 98 Appendix 混凝土生物性質測試 102 | |
| dc.language.iso | en | |
| dc.title | 綠色再生資源於水路建材之應用 | zh_TW |
| dc.title | The study of agricultural and industrial wastes as green materials for waterway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 程耀毅,芮祥鵬,陳儀帆 | |
| dc.subject.keyword | 稻殼灰,矽灰,牡蠣殼,混凝土, | zh_TW |
| dc.subject.keyword | rice husk ash,silica fume,oyster shell,concrete, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
