請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18486完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡坤諭(Kuen-Yu Tsai) | |
| dc.contributor.author | Hao-Yun Yu | en |
| dc.contributor.author | 余浩澐 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:07:41Z | - |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | [1] '2011 tables of Lithography,' in ITRS, 2011th Ed., 2011.
[2] M. Fujita, K. Shiozawa, T. Kase, H. Hayakawa, F. Mizuno, R. Haruta, et al., 'Application and evaluation of direct-write electron beam for ASICs,' Solid-State Circuits, IEEE Journal of, vol. 23, pp. 514-519, 1988. [3] L. Pain, M. Charpin, Y. LaPlanche, and D. Henry, 'Shaped e-beam lithography integration work for advanced ASIC manufacturing: progress report,' 2002, pp. 607-618. [4] W. M. Tong, E. D. Liu, C. Tran, T. Prescop, and D. K. Lam, 'Multiple columns for high-throughput complementary e-beam lithography (CEBL),' vol. 8323, pp. 83231Y-83231Y-10, 2012. [5] J. J. H. Chen, S. J. Lin, T. Y. Fang, S. M. Chang, F. Krecinic, and B. J. Lin, 'Multiple electron beam maskless lithography for high-volume manufacturing,' in VLSI Technology, Systems, and Applications, 2009. VLSI-TSA '09. International Symposium on, 2009, pp. 96-97. [6] T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, 'Multiple electron-beam lithography,' SciVerse ScienceDirect Journals vol. 57, 2001. [7] P. Kruit, S. Steenbrink, R. Jager, and M. Wieland, 'Optimum dose for shot noise limited CD uniformity in electron-beam lithography,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 2948, 2004. [8] H.-T. Ng, 'New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints,' Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, p. 033007, 2012. [9] A. Saeki, T. Kozawa, and S. Tagawa, 'Relationship between Resolution, Line Edge Roughness, and Sensitivity in Chemically Amplified Resist of Post-Optical Lithography Revealed by Monte Carlo and Dissolution Simulations,' Applied Physics Express, vol. 2, p. 075006, 2009. [10] W. M. Tong, L. Oria, A. Ruiz de Luzuriaga, J. A. Alduncin, and F. Perez-Murano, 'Block co-polymer guided self-assembly by surface chemical modification: optimization of multiple patterning process and pattern transfer,' vol. 8323, pp. 832327-832327-7, 2012. [11] E. W. Edwards, M. Muller, M. P. Stoykovich, H. H. Solak, J. J. de Pablo, and P. F. Nealey, 'Dimensions and Shapes of Block Copolymer Domains Assembled on Lithographically Defined Chemically Patterned Substrates,' Macromolecules, vol. 40, pp. 90-96, 2007/01/01 2006. [12] J. Y. Cheng, C. T. Rettner, D. P. Sanders, H.-C. Kim, and W. D. Hinsberg, 'Dense Self-Assembly on Sparse Chemical Patterns: Rectifying and Multiplying Lithographic Patterns Using Block Copolymers,' Advanced Materials, vol. 20, pp. 3155-3158, 2008. [13] R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, T. R. Albrecht, et al., 'Density multiplication and improved lithography by directed block copolymer assembly,' Science, vol. 321, pp. 936-9, Aug 15 2008. [14] K. Koo, H. Ahn, S.-W. Kim, D. Y. Ryu, and T. P. Russell, 'Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large,' Soft Matter, vol. 9, p. 9059, 2013. [15] J. Y. Cheng, F. Zhang, H. I. Smith, G. J. Vancso, and C. A. Ross, 'Pattern Registration Between Spherical Block-Copolymer Domains and Topographical Templates,' Advanced Materials, vol. 18, pp. 597-601, 2006. [16] D. J. C. Herr, L. Oria, A. Ruiz de Luzuriaga, X. Chevalier, J. A. Alduncin, D. Mecerreyes, et al., 'Guided self-assembly of block-copolymer for CMOS technology: a comparative study between grapho-epitaxy and surface chemical modification,' vol. 7970, pp. 79700P-79700P-10, 2011. [17] Wikipedia, 'Transistor Count and Moore's Law,' 2011. [18] H. J. Levinson, H. Dai, C. Bencher, Y. Chen, H. Woo, C. Ngai, et al., '45nm and 32nm half-pitch patterning with 193nm dry lithography and double patterning,' vol. 6924, pp. 692421-692421-7, 2008. [19] A. a. h. w. i. n. International Technology Roadmap of Semiconductor. [20] '2013 tables of Lithography,' in ITRS, 2013th Ed., 2013. [21] M.-S. Su, K.-Y. Tsai, Y.-C. Lu, Y.-H. Kuo, T.-H. Pei, and J.-Y. Yen, 'Architecture for next-generation massively parallel maskless lithography system (MPML2),' Proc. SPIE, vol. 7637, pp. 76371Q-76371Q-8, 2010. [22] H.-T. Ng, Y.-T. Shen, S.-Y. Chen, C.-H. Liu, P. C. W. Ng, and K.-Y. Tsai, 'New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints,' Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, p. 033007, 2012. [23] C. In Wook, K. Hyunsu, H. Joo-Yoo, O. Hye-Keun, and K. Seong Wook, 'Reduction of Line Width and Edge Roughness by Resist Reflow Process for Extreme Ultra-Violet Lithography,' Journal of the Korean Physical Society, vol. 56, p. 1767, 2010. [24] S. Bangsaruntip, A. M. G. M. Cohen, S. U. E. Y. Zhang, L. M. G. N. C. M. Fuller, J. S. N. S. Mittal, M. Guillorn, et al., 'High Performance and Highly Uniform Gate-All-Around Silicon Nanowire MOSFETs with Wire Size Dependent Scaling,' Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1-4, 2009. [25] C. Bencher, J. Smith, L. Miao, C. Cai, Y. Chen, J. Y. Cheng, et al., 'Self-assembly patterning for sub-15nm half-pitch: a transition from lab to fab,' 2011, pp. 79700F-79700F-9. [26] W. M. Tong, Y.-M. Chuang, H.-H. Cheng, K. Jack, A. Whittaker, I. Blakey, et al., 'Healing LER using directed self assembly: treatment of EUVL resists with aqueous solutions of block copolymers,' vol. 8680, pp. 868009-868009-10, 2013. [27] W. M. Tong, B. Rathsack, M. Somervell, J. Hooge, M. Muramatsu, K. Tanouchi, et al., 'Pattern scaling with directed self assembly through lithography and etch process integration,' vol. 8323, pp. 83230B-83230B-14, 2012. [28] J. Y. Cheng, D. P. Sanders, H. D. Truong, S. Harrer, A. Friz, S. Holmes, et al., 'Simple and Versatile Methods To Integrate Directed Self-Assembly with Optical Lithography Using a Polarity-Switched Photoresist,' ACS Nano, vol. 4, pp. 4815-4823, 2010/08/24 2010. [29] S. B. Darling, 'Directing the self-assembly of block copolymers,' Progress in Polymer Science, vol. 32, pp. 1152-1204, 2007. [30] M. P. Stoykovich, M. Muller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. de Pablo, et al., 'Directed assembly of block copolymer blends into nonregular device-oriented structures,' Science, vol. 308, pp. 1442-6, Jun 3 2005. [31] S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. d. Pablo, and P. F. Nealey, 'Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,' Nature, vol. 424, pp. 411-414, 2003. [32] W. M. Tong, H.-H. Cheng, I. Keen, A. Yu, Y.-M. Chuang, I. Blakey, et al., 'EUVL compatible LER solutions using functional block copolymers,' vol. 8323, pp. 83231O-83231O-11, 2012. [33] H. S. P. Wong, C. Bencher, H. Yi, X.-Y. Bao, and L.-W. Chang, 'Block copolymer directed self-assembly enables sublithographic patterning for device fabrication,' 2012, pp. 832303-832303-7. [34] H. Yi, X. Y. Bao, J. Zhang, C. Bencher, L. W. Chang, X. Chen, et al., 'Flexible control of block copolymer directed self-assembly using small, topographical templates: potential lithography solution for integrated circuit contact hole patterning,' Adv Mater, vol. 24, pp. 3107-14, 3082, Jun 19 2012. [35] W. Lu and C. M. Lieber, 'Nanoelectronics from the bottom up,' Nature materials, vol. 6, pp. 841-850, 11/ 2007. [36] Y. S. Jung, W. Jung, H. L. Tuller, and C. A. Ross, 'Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography,' Nano Letters, vol. 8, pp. 3776-3780, 2008/11/12 2008. [37] P. Nealey, 'Semiconductor Research Corporation,' vol. SRC Summer Study, Vail, CO. , June 2005. [38] D. Wu and X. Yang, 'Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures,' J Phys Chem B, vol. 116, pp. 12048-56, Oct 4 2012. [39] C.-H. Liu, P. C. W. Ng, Y.-T. Shen, S.-W. Chien, and K.-Y. Tsai, 'Impacts of point spread function accuracy on patterning prediction and proximity effect correction in low-voltage electron-beam-direct-write lithography,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 31, pp. 021605-021605-18, 2013. [40] M. Yoshizawa and S. Moriya, 'Quantitative factor analysis of resolution limit in electron beam lithography using the edge roughness evaluation method,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 3105, 2000. [41] A. C. Chen, C.-H. Liu, H.-T. Ng, P. C. W. Ng, K.-Y. Tsai, S.-J. Lin, et al., 'A novel curve-fitting procedure for determining proximity effect parameters in electron beam lithography,' vol. 7140, pp. 71401I-71401I-10, 2008. [42] 許興勝, 熊志剛, 孫增輝, 杜偉, 鲁琳, 陳弘達, et al., '半導體量子阱材料微加工光子晶體的光學特性,' 物理學報, vol. 55, p. 237—241, 2006. [43] S. Valkealahti and R. M. Nieminen, 'Monte Carlo calculations of keV electron and positron slowing down in solids. II,' Applied Physics A, vol. 35, pp. 51-59, 1984/09/01 1984. [44] Z. Czyżewski, D. O. N. MacCallum, A. Romig, and D. C. Joy, 'Calculations of Mott scattering cross section,' Journal of Applied Physics, vol. 68, p. 3066, 1990. [45] W. S. M. Werner, 'Slowing down of medium-energy electrons in solids,' Physical Review B, vol. 55, pp. 14925-14934, 06/01/ 1997. [46] H.-T. Hg, 'Patterning simulation based on direct Monte Carlo method and its application to electron optical system optimization for electron beam lithography,' Master Thesis, pp. Graduate Institute of Electrical Engineering, National Taiwan University, 2012. [47] C.-H. Liu, 'New parametric point spread function calibration methodology for improving the accuracy of patterning prediction in electron-beam lithography,' Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, p. 013009, 2012. [48] X. Zhao, S.-Y. Lee, S.-H. Lee, B.-G. Kim, and H.-K. Cho, 'Fast simulation of stochastic exposure distribution in electron-beam lithography,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, pp. 06F308-06F308-8, 2012. [49] Q. Dai, S. Y. Lee, S. H. Lee, B. G. Kim, and H. K. Cho, 'Experiment-based estimation of point spread function in electron-beam lithography: Forward-scattering part,' Microelectronic Engineering, vol. 88, pp. 3054-3061, 10// 2011. [50] D. D. Alexandre Real, 'monte carlo simulation of electron trajectory in solids,' vol. Universite de Sherbrooke, CASINO V3.2, 2011. [51] vol. The MathWorks, Inc, r2008b, pp. Natick, Massachusetts .United States, 2008. [52] P. Kruit and S. W. H. K. Steenbrink, 'Shot noise in electron-beam lithography and line-width measurements,' Scanning, vol. 28, pp. 20-26, 2006. [53] J. L. Sturtevant, J.-Y. Lee, J. Shin, H.-W. Kim, S.-G. Woo, H.-K. Cho, et al., 'Effect of line-edge roughness (LER) and line-width roughness (LWR) on sub-100-nm device performance,' vol. 5376, pp. 426-433, 2004. [54] Y. Fu-Liang, H. Jiunn-Ren, and L. Yiming, 'Electrical Characteristic Fluctuations in Sub-45nm CMOS Devices,' in Custom Integrated Circuits Conference, 2006. CICC '06. IEEE, 2006, pp. 691-694. [55] X. Shiying, J. Bokor, X. Qi, P. Fisher, I. Dudley, R. Paula, et al., 'Is gate line edge roughness a first-order issue in affecting the performance of deep sub-micro bulk MOSFET devices?,' Semiconductor Manufacturing, IEEE Transactions on, vol. 17, pp. 357-361, 2004. [56] A. Asenov, S. Kaya, and A. R. Brown, 'Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,' Electron Devices, IEEE Transactions on, vol. 50, pp. 1254-1260, 2003. [57] h. w. m. c.-T. M. The MathWorks - MATLAB and Simulink for Technical Computing, Inc., access date: Jun. 15, 2011. [58] Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, 'Electrical impact of line-edge roughness on sub-45nm node standard cell,' 2009, pp. 727518-727518-10. [59] R. A. Segalman, 'Patterning with block copolymer thin films,' Materials Science and Engineering: R: Reports, vol. 48, pp. 191-226, 2005. [60] A. N. Semenov, 'Contribution to the theory of microphase layering in block-copolymer melts,' Journal of Experimental and Theoretical Physics, vol. 61, p. 733, 1985. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18486 | - |
| dc.description.abstract | Line edge roughness (LER) influencing the electrical performance of circuit components is a key challenge for electron-beam lithography (EBL) due to the continuous scaling of technology feature sizes. Controlling LER within an acceptable tolerance that satisfies International Technology Roadmap for Semiconductors requirements while achieving high throughput become a challenging issue. Although lower dosage and more-sensitive resist can be used to improve throughput, they would result in serious LER-related problems because of increasing relative fluctuation in the incident positions of electrons. Directed self-assembly (DSA) is a promising technique to relax LER-related pattern fidelity (PF) requirements because of its self-healing ability, which may benefit throughput. To quantify the potential of throughput improvement in EBL by introducing DSA for post healing, rigorous numerical methods are proposed to simultaneously maximize throughput by adjusting writing parameters of EBL systems subject to relaxed LER-related PF requirements. A fast, continuous model for parameter sweeping and a hybrid model for more accurate patterning prediction are employed for the patterning simulation. The tradeoff between throughput and DSA self-healing ability is investigated. Preliminary results indicate that significant throughput improvements are achievable at certain process conditions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:07:41Z (GMT). No. of bitstreams: 1 ntu-103-R01921065-1.pdf: 2646032 bytes, checksum: 6e7407eb9ebecf1ce25d52b3149f62e4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv STATEMENT OF CONTRIBUTIONS vii CONTENTS viii LIST OF FIGURES xi LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Moore’s law and lithography 2 1.2 Multiple-electron-beam–direct-write lithography 4 1.3 Direct self-assembly of block copolymers 7 1.4 Adjustment of electron-beam writing parameters 15 1.5 Organization of this thesis 16 Chapter 2 Patterning prediction in electron-beam lithography 18 2.1 Patterning prediction method 19 2.2 Patterning prediction with Monte Carlo algorithm 21 2.2.2 Estimation of the polar angle 23 2.2.3 Estimation of the azimuth angle 24 2.2.4 Estimation of the travel distance between two collisions 24 2.2.5 Estimation of the energy loss over electron travelling 24 2.2.6 Collision location determination 26 2.3 Energy distribution of electrons in resist 27 2.3.1 Point spread function 27 2.3.2 Accuracy improvement of NTU in-house Monte Carlo algorithm-based electron-scattering simulator with model parameters calibration 28 2.4 Computation effort reduction of Monte Carlo algorithm-based patterning prediction with proposed acceleration method 34 2.5 Patterning fidelity measurement 40 2.5.1 Line edge roughness 41 2.5.2 Gate critical dimension variation 43 Chapter 3 New e-beam writing parameters optimization method with patterning fidelity constraints relaxation 45 3.1 Optimization flow and settings 46 3.1.1 Fitting optimization functions of fmincon 48 3.2 Optimization flow and settings with region classification 50 Chapter 4 Application of the proposed writing parameters optimization method 55 4.1 Optimization settings and results for LER requirement relaxation 55 4.2 Optimization settings and results for LER and gate CD variation relaxation 59 4.3 Optimization settings and results for LER and gate CD variation relaxation with region classification 63 Chapter 5 Discussion of throughput improvement with direct self-assembly for pattern rectification 70 Chapter 6 Conclusions and future work 73 Appendix 75 Bibliography 76 Vita 84 Publication List 85 | |
| dc.language.iso | en | |
| dc.title | 利用圖形修復並藉由放寬之製像真確度條件以達到直寫微影之產能改善 | zh_TW |
| dc.title | Improvement in Direct-Write Lithography Throughput by Exploiting Relaxed Patterning Fidelity Requirements with Pattern Rectification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳敏璋(Miin-Jang Chen),戴子安(Chi-An Dai),林本堅(Burn J. Lin),林浩雄(Hao-Hsiung Lin),李佳翰(Jia-Han Lee) | |
| dc.subject.keyword | 邊緣粗糙度,臨界尺寸,電子束微影,直寫,分子自組裝,產能,製像真確度, | zh_TW |
| dc.subject.keyword | line edge roughness,critical dimension,electron-beam lithography,direct-write,direct self-assembly,throughput,patterning fidelity, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
