Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18478
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏伯勳(Yen Bo-Shiun)
dc.contributor.authorHsuan Wangen
dc.contributor.author王旋zh_TW
dc.date.accessioned2021-06-08T01:07:16Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation1. Poirier, V. and Y. Av-Gay, Mycobacterium tuberculosis modulators of the macrophage's cellular events. Microbes Infect, 2012. 14(13): p. 1211-9.
2. Sakamoto, K., The pathology of Mycobacterium tuberculosis infection. Vet Pathol, 2012. 49(3): p. 423-39.
3. Azad, A.K., W. Sadee, and L.S. Schlesinger, Innate immune gene polymorphisms in tuberculosis. Infect Immun, 2012. 80(10): p. 3343-59.
4. North, R.J. and Y.J. Jung, Immunity to tuberculosis. Annu Rev Immunol, 2004. 22: p. 599-623.
5. Pan, H., et al., Ipr1 gene mediates innate immunity to tuberculosis. Nature, 2005. 434(7034): p. 767-72.
6. Geissmann, F., et al., Development of monocytes, macrophages, and dendritic cells. Science, 2010. 327(5966): p. 656-61.
7. Mantovani, A., Macrophage diversity and polarization: in vivo veritas. Blood, 2006. 108(2): p. 408-409.
8. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol, 2010. 11(10): p. 889-96.
9. Aderem, A. and R.J. Ulevitch, Toll-like receptors in the induction of the innate immune response. Nature, 2000. 406(6797): p. 782-7.
10. Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol, 2004. 4(7): p. 499-511.
11. Medzhitov, R., Toll-like receptors and innate immunity. Nat Rev Immunol, 2001. 1(2): p. 135-45.
12. Bloch, D.B., et al., SP110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Molecular and Cellular Biology, 2000. 20(16): p. 6138-6146.
13. Cliffe, S.T., et al., Clinical, molecular, and cellular immunologic findings in patients with SP110-associated veno-occlusive disease with immunodeficiency syndrome. J Allergy Clin Immunol, 2012. 130(3): p. 735-742 e6.
14. Watashi, K., et al., Modulation of Retinoid Signaling by a Cytoplasmic Viral Protein via Sequestration of SP110b, a Potent Transcriptional Corepressor of Retinoic Acid Receptor, from the Nucleus. Molecular and Cellular Biology, 2003. 23(21): p. 7498-7509.
15. Roscioli, T., et al., Mutations in the gene encoding the PML nuclear body protein SP110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nat Genet, 2006. 38(6): p. 620-2.
16. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
17. Li, J. and J. Yuan, Caspases in apoptosis and beyond. Oncogene, 2008. 27(48): p. 6194-206.
18. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006. 25(34): p. 4798-811.
19. Schwende, H., et al., Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol, 1996. 59(4): p. 555-61.
20. Daigneault, M., et al., The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010. 5(1): p. e8668.
21. Li, K., et al., CD14 overexpression upregulates TNF-alpha-mediated inflammatory responses and suppresses the malignancy of gastric carcinoma cells. Mol Cell Biochem, 2013. 376(1-2): p. 137-43.
22. Papanicolaou, D.A., et al., The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med, 1998. 128(2): p. 127-37.
23. Hopkins, S.J., The pathophysiological role of cytokines. Legal Medicine, 2003. 5: p. S45-S57.
24. Zhang, N., et al., The role of apoptosis in the development and function of T lymphocytes. Cell Res, 2005. 15(10): p. 749-69.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18478-
dc.description.abstract肺結核主要是由結核分枝桿菌所造成的慢性傳染性疾病,可以透過患者的飛沫進行傳染。根據統計,全世界約有三分之一的人口曾經感染過結核分枝桿菌,然而,在這些感染者中卻只有約十分之一的人會發展為肺結核。目前研究認為宿主的免疫力以及基因多型性(polymorphism)可能是導致宿主是否能抵抗病原菌的重要因素。由先前在小鼠的研究發現一段調控先天免疫的基因座sst1 (Supersusceptibility to tuberculosis 1),並且在此區域找到一個基因Ipr1 (Intracellular pathogen resistance 1),它可能參與小鼠感染結核分枝桿菌時的先天免疫反應。人類的核蛋白SP110為小鼠Ipr1蛋白的同源蛋白有高達41%的相似度,在轉錄過程中經過選擇性剪接(Alternative splicing)可以產生三種不同的異構體SP110a、SP110b及SP110c;然而,三者在免疫反應扮演的角色與功能目前尚不明確。 我們成功建立由Doxycycline誘導分別表現SP110a、SP110b及SP110c的THP-1細胞株,透過phorbol 12-myristate 13-acetate (PMA)誘導THP-1細胞株分化成巨噬細胞,並能分別穩定表現SP110 isoforms。利用流式細胞儀分析,我們發現表現SP110b時會降低參與先天免疫反應重要的表面受體CD14,而表現SP110a及SP110c對於表面受體CD14沒有顯著影響。這個結果暗示SP110b可能在先天免疫反應中扮演重要的角色。接著我們進一步分析CD14/TLR4訊息傳遞路徑下游促發炎細胞激素mRNA表現量,結果發現SP110 isoforms在THP-1細胞株分化前能促進促發炎細胞激素mRNA表現量,但是在分化後的THP-1細胞株中卻發現SP110b會抑制促發炎細胞激素mRNA表現量。SP110 isoforms 不只在分化前後分別扮演不同功能,而且對於促發炎細胞激素mRNA表現量分別有著不同的調控。此結果暗示,SP110 isoforms在先天免疫反應中,可能有維持促發炎細胞激素恆定的功能。另外,在Interferon-γ作用下,我們分別表現SP110a、SP110b及SP110c並用流式細胞儀分析巨噬細胞的細胞凋亡程度,結果發現SP110b能有效抑制Interferon-γ誘導的發炎環境下巨噬細胞的細胞凋亡。這些結果顯示,SP110b在先天免疫反應中,可能扮演調控者的角色,避免過度免疫反應造成組織的損傷,而SP110a和SP110c相較SP110b在先天免疫反應中可能扮演次要的角色。SP110 isoforms是如何調控促發炎細胞激素目前尚不清楚是否有其他分子參與其中,未來可藉由分析細胞中與SP110 isoforms結合的分子,來釐清由SP110 isoforms所調控的促發炎細胞激素。

關鍵字:核蛋白; 巨噬細胞; 肺結核
zh_TW
dc.description.abstractTuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb) and is the second leading cause of death in infectious disease worldwide. It’s estimated that one-third of the world’s population is currently infected with Mtb, and only less than 10% of people will develop TB disease during their lifetime. In the previous study, a gene Ipr1 (Intracellular pathogen resistance 1) was identified within sst1 (Supersusceptibility to tuberculosis 1) locus on mouse chromosome 1, which participates in innate immunity in mouse models of Mtb infection. SP110 nuclear body protein (SP110) is the human homologous of Ipr1 protein and the protein has three major isoforms: SP110a, SP110b and SP110c. The alternative splicing gives rise to different isoforms of SP110; however, the distinct roles and functions among these isoforms are still unclear. In this study, we have successfully generated several THP-1 clones which express SP110a, SP110b and SP110c upon Doxycycline induction. We treated THP-1 clones with phorbol 12-myristate 13-acetate (PMA) to differentiate into macrophages, which stably expressed SP110a, SP110b and SP110c. By flow cytometric analysis of macrophages surface markers, we found that the expression of CD14, a marker of M1 macrophage, as well as a co-receptor of the Toll-like receptor4, was decreased when expressing SP110b, but not in PMA-induced macrophage when expressing SP110a or SP110c. By analyzing NF-κB mediated pro-inflammatory cytokines mRNA expression, we found that SP110 isoforms functioned diversely in THP-1 monocytes and PMA-induced macrophages. During M. tb infection, IFN-γ activation renders the macrophages' ability of killing intracellular mycobacteria by overcoming the phagosome maturation block and inducing apoptosis in macrophages. After IFN-γ stimulation, Anneix-V apoptosis assay showed that IFN-γ stimulated apoptosis of PMA-induced macrophages, while the expression of SP110b can prevent apoptosis. Based on our findings, we suggested that SP110 isoforms play important roles as immune regulators in regulation of innate immune homeostasis. SP110b also played a role in IFN-γ-induced apoptosis by reducing apoptosis in PMA-induced macrophages. SP110b might demonstrate different cellular functions from SP110a/SP110c did, of which could reduce over-active immune responses after PMA or IFN-γ stimulation. The mechanisms of how SP110 isoforms regulate pro-inflammtory cytokines mRNA and how they prevent apoptosis remain unknown. In the future, by identifying the molecules associated with the SP110 isofroms and by analyzing other anti-apoptosis proteins, we can further elucidate the mechanism of SP110 isoforms in regulating innate immune homeostasis and apoptosis.
Key words : Nuclear protein; Macrophage; Tuberculosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:07:16Z (GMT). No. of bitstreams: 1
ntu-103-R01442003-1.pdf: 3008906 bytes, checksum: d14e01c929a2a0eec93dec107c361ae8 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要------------------------------------------------------i
Abstract -----------------------------------------------------------------iii
第一章 導論--------------------------------------------------------------1
第一節 肺結核(Tuberculosis)------------------------------------------------------------------1
第二節 先天免疫反應(Innate immune)------------------------------------------------------2
2.1 巨噬細胞(Macrophage)-----------------------------------------------------------------2
2.2 類鐸受體(Toll-like receptors)----------------------------------------------------------2
2.3 第四型類鐸受體訊息傳遞(Toll-like receptors 4 signaling pathway)------------3
第三節 核蛋白Speckled protein 110kDa (SP110-------------------------------------------4
第四節 細胞凋亡(Apoptosis)-------------------------------------------------------------------5
4.1 外源性細胞凋亡路徑(Extrinsic apoptotic pathway)-------------------------------5
4.2 內生性細胞凋亡路徑(Intrinsic apoptotic pathway)--------------------------------6
第二章 材料與方法-----------------------------------------------------------------------7
第一節 細胞培養----------------------------------------------------------------------------------7
1.1 人類單核球細胞株THP-1 (Human acute monocytic leukemia)------------------7
1.2 細胞的培養--------------------------------------------------------------------------------7
1.3 細胞的計數--------------------------------------------------------------------------------7
第二節 細胞保存----------------------------------------------------------------------------------8
2.1 細胞冷凍(Cell freezing)---------------------------------------------------------------8
VI
2.2 細胞解凍(Cell thawing)--------------------------------------------------------------8
第三節 慢病毒生產(Lentivirus production)----------------------------------------------8
第四節 慢病毒轉染(Lentivirus transduction)-------------------------------------------9
第五節 免疫磁珠分離法(Magnetic activated cell sorting, MACS)------------------9
第六節 株系選擇(Clone selection)----------------------------------------------------------10
第七節 蛋白質分析法--------------------------------------------------------------------------10
7.1 蛋白質濃度測定(BCA Protein Assay)---------------------------------------10
7.2 十二烷基磺酸鈉-聚丙烯鎦胺膠體電泳分析(SDS-PAGE)------------------10
7.3 西方墨點法(Western blotting)----------------------------------------------------12
第八節 即時定量聚合酶鏈反應(Real-time PCR)---------------------------------------13
8.1 RNA萃取(RNA isolation)----------------------------------------------------------13
8.2 第一股cDNA合成(First-strand cDNA synthesis)------------------------------13
8.3 即時定量聚合酶鏈反應之標準樣品配製-----------------------------------------14
8.4 Real-time PCR -------------------------------------------------------------------------14
第九節 細胞凋亡分析(Apoptosis assay)---------------------------------------------------15
第十節 細胞表面受體分析(Cell surface marker assay)-------------------------------15
第三章 結果------------------------------------------------------------16
第一節 穩定誘導表現的eGFP-SP110 isoforms細胞株其特性分析------------------16
1.1 PMA誘導分化THP-1細胞株的外觀差異-----------------------------------------16
1.2 穩定誘導表現eGFP-SP110 isoforms細胞株的SP110 isoforms表現量------16
第二節 SP110 isoforms影響THP-1分化的巨噬細胞表面受體CD14 mRNA-17
第三節 IFN-γ發炎環境下SP110 isoforms影響THP-1細胞表面受體CD14--17
3.1 PMA誘導分化THP-1細胞株無法活化表面受體CD14表現---------------17
3.2 發炎環境下SP110b抑制THP-1細胞表面受體CD14----------------------18
3.3發炎環境下SP110 isoforms抑制THP-1細胞內表面受體CD14----18
VII
第四節 SP110 isoforms影響THP-1分化的巨噬細胞CD14/TLR4所參與的訊息傳 遞路徑------------------------------------------------------------------------------------19
第五節 SP110 isoforms影響THP-1細胞CD14/TLR4所參與的訊息傳遞路徑---20
5.1 SP110b和SP110c促進未分化的THP-1細胞株表面受體CD14 mRNA-----20
5.2 SP110 isoforms影響未分化的THP-1細胞株NF-κB調控的促發炎細胞激素 mRNA表現量-------------------------------------------------------------------------- 20
第六節 SP110b影響PMA誘導THP-1分化的巨噬細胞其細胞凋亡的程度-------21
第七節 SP110b對於巨噬細胞其內生性細胞凋亡訊息傳遞路徑的影響-------------21
7.1 SP110b對於內生性細胞凋亡路徑的Mcl-1蛋白沒有產生影響---------------22
7.2 SP110b對於參與細胞自噬蛋白LC3沒有影響-----------------------------22
第四章 討論------------------------------------------------------------23
第一節 SP110 isoforms對於巨噬細胞表面受體CD14的影響------------------------23
第二節SP110 isoforms對於有無受到PMA誘導分化的THP-1細胞株
CD14/TLR4的訊息傳遞路徑產生不同影響----------------------------------24
2.1 SP110 isoforms影響分化前後THP-1細胞株CD14 mRNA表現量---24
2.2 SP110 isoforms影響分化前後THP-1細胞株促發炎細胞激素mRNA--24
2.2.1 腫瘤壞死因子-α (Tumor necrosis factor alpha, TNF-α)----------------------24
2.2.2介白素-6 (Interleukin-6, IL-6)------------------------------------------------------25
2.2.3 干擾素-β (Interferon-β, IFN-β) ----------------------------------------------------26
第三節 SP110b對於細胞凋亡訊息傳遞路徑的影響------------------------------------26
第四節 假說(Hypothesis)---------------------------------------------------------------------27
第五節 未來展望-------------------------------------------------------------------------------27
第五章 圖表-----------------------------------------------------------29
第六章 參考文獻------------------------------------------------------47
dc.language.isozh-TW
dc.titleSP110異構蛋白在巨噬細胞中的功能之研究zh_TW
dc.titleCharacterization of the different roles and functions of SP110 isoforms in macrophagesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林敬哲(Lin Jing-Jer),陳美齡(Chen Mei-Ling)
dc.subject.keyword核蛋白,巨噬細胞,肺結核,zh_TW
dc.subject.keywordNuclear protein,Macrophage,Tuberculosis,en
dc.relation.page47
dc.rights.note未授權
dc.date.accepted2014-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved