Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18428
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪傳揚(Chwan-Yang Hong)
dc.contributor.authorYi-Cheng Lien
dc.contributor.author李易整zh_TW
dc.date.accessioned2021-06-08T01:04:44Z-
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citationApel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399
Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual review of plant biology 50: 601-639
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant physiology 141: 391-396
Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant molecular biology 65: 277-284
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry 44: 276-287
Boyer JS (1982) Plant productivity and environment. Science 218: 443-448
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-254
Burke JJ, Hatfield JL (1987) Plant Morphological and Biochemical Responses to Field Water Deficits III. Effect of Foliage Temperature on the Potential Activity of Glutathione Reductase. Plant physiology 85: 100-103
Chen K-M, Gong H-J, Chen G-C, Wang S-M, Zhang C-L (2004) Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. Journal of Plant Growth Regulation 23: 20-28
Chen Y-P, Xing L-P, Wu G-J, Wang H-Z, Wang X-E, Cao A-Z, Chen P-D (2007) Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant and cell physiology 48: 1702-1712
Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Science 45: 437-448
Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Functional Plant Biology 25: 665-671
Connell JP, Mullet JE (1986) Pea chloroplast glutathione reductase: purification and characterization. Plant physiology 82: 351-356
Contour-Ansel D, Torres-Franklin ML, DE CARVALHO MHC, D'Arcy-Lameta A, ZUILY-FODIL Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Annals of botany 98: 1279-1287
Creissen G, Edwards EA, Enard C, Wellburn A, Mullineaux P (1992) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). The Plant Journal 2: 129-131
Creissen GP, Mullineaux PM (1995) Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197: 422-425
Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. Journal of experimental botany 55: 205-212
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi‐Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal 33: 751-763
Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25
Hagar H, Ueda N, Shah SV (1996) Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. studies 25: 46
Hernandez JA, Corpas FJ, Gomez M, Rio LA, Sevilla F (1993) Salt‐induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum 89: 103-110
Hong C-Y, Chao Y-Y, Yang M-Y, Cheng S-Y, Cho S-C, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant and soil 320: 103-115
Hong C-Y, Chao Y-Y, Yang M-Y, Cho S-C, Huei Kao C (2009) Na+ but not Cl- or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. Journal of plant physiology 166: 1598-1606
Hsieh T-H, Lee J-t, Charng Y-y, Chan M-T (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology 130: 618-626
Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. Journal of Experimental Botany 56: 3041-3049
Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal of plant physiology 161: 1347-1357
Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology 42: 1265-1273
Jithesh M, Prashanth S, Sivaprakash K, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant cell reports 25: 865-876
Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant and cell physiology 39: 1269-1280
Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65: 729-735
Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of biosciences 31: 389-404
Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary structure and properties of glutathione reductase from Arabidopsis thaliana. Plant and cell physiology 34: 1259-1266
Lascano H, Casano L, Melchiorre M, Trippi V (2001) Biochemical and molecular characterisation of wheat chloroplastic glutathione reductase. Biologia plantarum 44: 509-516
Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology 158: 737-745
Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Science 160: 323-329
Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiologia plantarum 134: 508-521
Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld J-P, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proceedings of the National Academy of Sciences 106: 9109-9114
Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49: 69-76
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in plant science 7: 405-410
Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS letters 554: 417-421
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology 22: 867-880
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology 49: 249-279
Rao AC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In Sulfur assimilation and abiotic stress in plants. Springer, pp 111-147
Rouhier N, Couturier J, Jacquot J-P (2006) Genome-wide analysis of plant glutaredoxin systems. Journal of experimental botany 57: 1685-1696
Sairam R, Shukla D, Saxena D (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum 40: 357-364
Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91
Scandalios J (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research 38: 995-1014
Scandalios JG (2002) The rise of ROS. Trends in biochemical sciences 27: 483-486
Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Current opinion in plant biology 6: 410-417
Smirnoff N, Colombe SV (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. Journal of Experimental Botany 39: 1097-1108
Stevens RG, Creissen GP, Mullineaux PM (1997) Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant molecular biology 35: 641-654
Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi A-T (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. Journal of plant physiology 165: 514-521
Tsai Y-C, Hong C-Y, Liu L-F, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. Journal of plant physiology 162: 291-299
Wu T-M, Lin W-R, Kao Y-T, Hsu Y-T, Yeh C-H, Hong C-Y, Kao CH (2013) Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant molecular biology 83: 379-390
Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I (2013) Plastid-Localized Glutathione Reductase2–Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance. The Plant Cell Online 25: 4451-4468
Zhang C-Q, Xu Y, Lu Y, Yu H-X, Gu M-H, Liu Q-Q (2011) The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 234: 541-554
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7: 30
Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PloS one 8: e57472
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18428-
dc.description.abstractGlutathione reductases (GR)為植物重要的抗氧化酵素,負責將氧化態的 GSSG 還原為 GSH 。水稻 GR 由三個基因組成,分別為位於細胞質的 OsGR2 ,和位於粒線體與葉綠體的 OsGR1 及 OsGR3 。利用半定量 RT-PCR 偵測 OsGR2 的基因表現情形。結果發現 OsGR2 在三葉齡幼苗的地上部及根部皆有表現,且以根部的表現量較高,而在水稻孕穗時期主要表現在劍葉、葉身、葉鞘、花及根中,而莖表現量較低。利用 OsGR2 專一性抗體進行西方墨點法結果顯示, OsGR2 顯著受到缺氮、缺鉀與缺鈣誘導表現,不同重金屬處理發現根部 OsGR2 受鎘誘導表現,在非生物逆境處理下, OsGR2 會受 ABA 、鹽、過氧化氫與缺水誘導,而植物荷爾蒙處理下激勃素、水楊酸與細胞分裂素誘導 OsGR2 表現。 PGR2/GUS 轉殖株分析顯示 OsGR2 會在葉、根、花、胚及糊粉層有較高表現。過量表現 OsGR2-GFP 融合蛋白的轉殖株水稻進一步確認 OsGR2 座落於細胞質表現。分析 RNAi 技術弱化 OsGR2 表現轉殖株顯示抑制 OsGR2 表現並減少約40%總 GR 活性,同時弱化 OsGR2 不會影響 OsGR1 及 OsGR3 之表現。功能性分析結果顯示弱化 OsGR2 會增加鹽分耐受性,反之大量表現 OsGR2 會降低耐鹽性;另外,抑制 OsGR2 表現也顯著降低植株的株高並導致稔實率下降,顯示 OsGR2 不只與鹽分耐受性有關也參與水稻莖部伸長之調控。zh_TW
dc.description.abstractGlutathione reductase (GR) is an important antioxidant enzyme which responsible for reduction of oxidized glutathione (GSSG) to GSH in plant. In rice, one cytosolic and two chloroplastic GR isoforms have been identified. OsGR2 ubiquitiously expressed in all rice tissues except stem tissue, which expressed relative low levels of OsGR2 mRNA. Immunobloting analysis by OsGR2 specific antibody revealed that OsGR2 is induced by nutrient deficiency such as nitrogen, potassium, and calcium.In addition, OsGR2 is induced by abiotic stresses and plant hormone including ABA, salt-stress, H2O2, drought stress, Gibberellin, Salicylic acid and Cytokinins. Histochemical analysis of transgenic rice containing OsGR2 promoter/GUS showed that GUS accumulated in shoot, root, floret, aleurone layer and embryo. Expression of OsGR2-GFP fusion protein in rice protoplasts revealed that OsGR2 is localized at cytosol. Attenuated expression of OsGR2 by RNA interference leads to decrease 40% GR activity and did not affect the expression of OsGR1 and OsGR3. Functional analysis showed that knocked-down OsGR2 increased salt tolerance, whereas overexpression of OsGR2 reduced salt tolerance. Furthermore, knocked-down OsGR2 significantly reduced plant height and decreased the fertility of rice grains. Thus, OsGR2 is not only negative regulated with salt tolerance but also involved in promote stem elongation of rice plants.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:04:44Z (GMT). No. of bitstreams: 1
ntu-103-R01623012-1.pdf: 2985094 bytes, checksum: 7c229b35473ba9780a3fb8858acf744e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
縮寫字對照 iv
目錄 v
圖目錄 viii
表目錄 x
附表目錄 x
壹、 前人研究 1
一、 非生物逆境對對植物生長發育的影響 1
二、 植物的抗氧化機制 1
三、 植物Glutathione reductase的功能 3
3.1 GR 的構造 3
3.2 GR 活性與植物逆境耐受性的關係 3
3.3 GR 在植物的功能 4
四、 水稻 Glutathione reductase 基因家族特性分析 6
貳、 本論文研究目的及實驗架構 7
參、 材料與方法 8
一、 植物材料與生長條件 8
二、 質粒的構築 8
三、 水稻基因轉殖 12
四、 基因表現分析材料準備及處理 14
五、 基因表現分析 16
六、 水稻試驗處理及生理分析 17
七、 GR 同功酵素染色分析 21
八、 啟動子特性分析 22
九、 原生質體抽取 22
十、 Microarray 資料蒐尋 23
十一、 統計分析 23
肆、 結果 24
一、 OsGR2 分子特性分析 24
1.1 OsGR2 基因組織專一性表現 24
1.2 OsGR2 對不同非生物逆境與植物荷爾蒙之表現 24
1.3 OsGR2 啟動子的特性分析 24
1.4 OsGR2 次細胞定位觀察 25
二、 OsGR2 轉殖株的功能分析 25
2.1轉殖株的分子特性分析 25
2.2 OsGR2 弱化表現與大量表現轉殖株的非生物性逆境耐受性分析 26
2.3 OsGR2 弱化表現轉殖株之外表型觀察 27
三、 OsGR2 弱化表現轉殖株microarray分析 28
3.1 Microarray 資料蒐尋 28
伍、 討論 29
一、 OsGR2 組織專一性與對不同非生物逆境和植物荷爾蒙之反應 29
二、 OsGR2 啟動子特性分析 30
三、 OsGR2 次細胞定位分析 30
四、 OsGR2 參與水稻對鹽分逆境的耐受性的調控 31
五、 OsGR2 參與水稻莖部的延長 32
陸、 參考文獻 34
柒、 附錄 76
一、 水稻基因轉殖用培養基列表 76
二、 木村氏(Kimura)水耕液配方 78
三、 變性膠體電泳分析 82
四、 原態膠體電泳分析 85
五、 GUS 染色溶液配方 86
六、 原生質體抽取所用之配方 86
七、 試驗所用之載體 87
八、 本論文中基因表現分析所使用的引子列表 87
dc.language.isozh-TW
dc.title水稻谷胱甘肽還原酶2 (OsGR2) 基因功能分析zh_TW
dc.titleFunctional Analysis of Glutathione Reductase 2 (OsGR2) Gene in Riceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張孟基(Men-Chi Chang),蔡育彰(Yu-Chang Tsai),陸重安(Chung-An Lu),黃文理(Wen-Lii Huang)
dc.subject.keyword穀胱甘?過還原?(glutathione redcutase),抗氧化酵素,鹽分逆境,氧化逆境,水稻,zh_TW
dc.subject.keywordGlutathione reductase,antioxidative enzyme,salt stress,oxidative stress,rice (Oryza sativa L),en
dc.relation.page88
dc.rights.note未授權
dc.date.accepted2014-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved