請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安(Chi-An Dai) | |
| dc.contributor.author | Po-Chun Lin | en |
| dc.contributor.author | 林柏均 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:04:38Z | - |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | 1. Kadakia, A.; Keskar, V.; Titushkin, I.; Djalilian, A.; Gemeinhart, R. A.; Cho, Biomedical Engineering, 2008, 441-471.
2. Carlsson, D.J.; Li, F.; Shimmura, S.; Griffith, M. Curr Opin Ophthalmo, 2003, 14, 192-197. 3. Eye Bank Association of America website. (http://www.restoresight.org/general/faqs.htm.) 4. Department of Health, Executive Yuan, R.O.C. (Taiwan). 5. The Collaborative Corneal Transplantation Research Group. ArchOphthalmol, 1992, 110,1392. 6. Council on Scientific Affairs. JAMA, 1988, 259,719. 7. Foulks, G.N.; Sanfilippo, F. Am J Ophthtalmol, 1982, 94, 5, 622-629. 8. Mader, T.H.; Stulting, R.D. Ophthalmol Clin North Am, 1991, 4, 411. 9. Myung, D.; Ta, C.; Frank, C.W.; Koh, W.G.; Noolandi, J. Unitied States Patent, 2011, US 7,909,867 B2. 10. Plieva, F.M.; Ekstom, P.; Galaev, I. Y.; Mattiasson, B. Soft Matter, 2008, 4, 2418-2428. 11. Peters, M. C.; Mooney, D. J. Mater. Sci. Forum, 1997, 250, 43-52. 12. Kim, B.-S.; Mooney, D. J. Trends Biotechnol, 1998, 16, 224-230. 13 Caldwell, D. R. Trans Am Ophthalmol Soc., 1998, 95,751-802. 14. Kaufman, H. E.; Barron, B. A.;McDonald, M. B. The Cornea. 2nd ed. Newton, MA: Butterworth-Heinemann, 1998. 15. Wilmer Eye Institute, 2007. http://www.hopkinsmedicine.org/wilmer/conditions/artificial_cornea.html. 16. Chirila, T. V. Biomaterials, 2001, 22, 3311-3317. 17. Zerbe, B. L.; Belin, M. W.; Ciolino, J. B.; Ophthalmology, 2006, 113, 1779. 18. Dudenhoefer, E. J.; Nouri, M.; Gipson, I. K. Cornea, 2003, 22, 424-428. 19. Ilhan-Sarac, O.; Akpek, E. K. Curr. Opin. Ophthalmol, 2005, 16, 246-250. 20. Doane, M. G.; Dohlman, C.H.; Bearse, G. Cornea, 1996 Mar, 15, 179-84. 21. Traish, A. S.; Chodosh, J. Semin Ophthalmol, 2010 , 25, 239-43. 22. Klufas, M. A.; Colby, K. A. Int Ophthalmol Clin., 2010, 50, 161-75. 23. Johnson, C. S.; Mian, S. I.; Moroi, S.; Epstein, D.; Izatt, J.; Afshari, N. A. Invest Ophthalmol Vis Sci, 2007, 48, 2540-2544. 24. Chapekar, M. S. J. Biomed. Mater. Res., 2000, 53, 617-620. 25 Hicks, C. R.; Werner, L.; Vijayasekaran, S.; Mamalis, N.; Apple, D. J. Cornea, 2005, 24, 933-9940. 26 Ottenbrite, R. M. P.; Kinam; Okano; Teruo, Ed. Biomedcical Appilcations of Hydrogels Handbook, Springer, 2010. 27 Hoffman, A. S. Adv Drug Deliver Rev, 2002, 54, 3-12. 28. Bryant, S. J.; Anseth, K. S. Journal of Biomedical Materials Research Part A, 2003, 64A, 70-79. 29. Benoit, D. S.; Durney, A. R.; Aneseth, K. S. Tissue Engineering, 2006, 12, 1663-1673. 30. Slaughter, O.; Lim, D. Advanced Materials, 2009, 21, 3307-3329. 31. Kevin Worrell, Chemical and Mechanical Characterization of Fully Degradable Double-Network Hydrogels Based on PEG and PAA. 32. Hoare, T. R.; Kohane, D. S. Polymer, 2008, 49, 1993-2007. 33. Bailey, B. M.; Hui, V.; Fei, R.; Grunlan, M. A. Journal of Materials Chemistry, 2011, 21, 18776-18782. 34. Hicks, C. R.; Hamilton, S. H. Cornea, 2005, 24, 692-698. 35. Myung, D.; Duhamel, P-E.; Cochran, J.; Noolandi, J.; Ta, C.; Frank, C. Biotechnol Prog. 2009, 24, 735-741. 36. Escobar-Chavez, J. J.; Lopez-Cervantes, M.; Naik, A.; Kalia, Y. N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. J. Pharm. Pharmaceut Sci., 2006, 9, 339-358. 37. Henry, R. L.; Schmolka, I. R. Crit. Rev. Biocmpatiblity, 1989, 5, 207-220. 38. Hamley, I. W. The physics of block copolymers, Oxford University Press, New York, USA, 1998, 1-20. 39. Mortensen, K.; Pedersen. J. S. Macromolecules, 1993, 26, 805-812. 40. Wade, L. G. Orangic Chemsitry, 8th ed. 41. Annabi, N.; Nichol, J. W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Tissue Engineering: Part B, 2010, 16, 371-383. 42. Peppas, N.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Adv Mater Deerfield, 2006, 1, 18. 43. Okay, O. Prog. Polym. Sci., 2000, 25, 711-779. 44. Okay, O. Macroporous Polymers, 2010, Chap. 1. 45. Dusek, K. Chompff AJ, Newman S, editiors. Polymer networks: structure and mechanical properties. New York: Plenum Press, 1971, 245-260. 46. Dusek, K. J. Polym. Sci. Part B, 1965, 3, 209. 47. Seidl, J. J. Chem. Prumysl, 1963, 13, 100. 48. Myung, D.; Farooqui, N.; Waters, D.; Schaber, S.; Koh, W.; Carrasco, M.; Noolandi, J.; Frank, C. W.; Ta, C. N. Current Eye Research, 2008, 33, 1, 29-43. 49. Waters, D. J.; Frank. C. W. Polymer, 2009, 50, 6331-6339. 50. Hou,Y.; Schoener, C. A.; Regan, K. R.; Munoz-Pinto, D.; Hahn, M. S.; Grunlan, M. A. Biomacromolecules, 2010, 11, 648-656. 51. Bailey, B. M.; Fei, R.; Munoz-Pinto, D.; Hahn, M. S.; Grunlan, M. A. Acta Biomaterialia, 2011, 8, 4324-4333. 52. Hahn, M. S.; Taite, L. J.; Moon, J. J.; Rowland, M. C.; Ruffinio, K. A.; West, J. L. Biomaterials, 2006, 27, 2519-2524. 53. Andreas, E. L. Icarus, 2007, 186, 24-30. 54. Krayz, G. T.; Averbuch, M.; Zelkind, I.; Gitis, L. Unitied States Patent, 2009, US 2009/0098200 A1. 55. Hansen, C. M. Hansen Solubility Parameters: A User's Handbook, 2nd Edition, CRC Press, Boca Taton, FL, 2007. 56. Lee, J. B.; Yoon, J. J.; Lee, D. S.; Park, T. G. J. Biomater. Sci. Polymer Edn, 2004, 15, 1571-1583. 57. Tew, G. N.; Sanabria-DeLong, N.; Aqrawai, S. K.; Bhatia, S. R. Soft Matter, 2005, 1, 253-258. 58. Browning, M. B.; Cereceres, S. N.; Luong, P. T.; Cosgriff-Hernandez, E. M. Journal of Biomedical Materials Research Part A, 2014, 00, 1-8. 59. Browning, M. B.; Cosgriff-Hernandez, E. M. Biomacromolecules, 2012, 13, 779-786. 60. Odelius, K.; Hoeglund, A.; Kumar, S.; Hakkarainen, M.; Ghosh, A. K.; Bhatnagar, N. Biomacromolecules, 2011, 12, 1250-1258. 61. Griffith, L.G. Acta. Mater., 2000, 48, 263-277. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18426 | - |
| dc.description.abstract | 本實驗藉由揭示人工角膜襯裙材料的開發與性質量測。以聚乙二醇以及泊洛沙姆 (Poloxamer) 高分子做為水膠材料,首先將末端官能基羥基 (hydroxyl groups)經丙烯醯氯反應而形成具有丙烯酸官能基高分子,並經由核磁共振 (NMR) 確認。有別於傳統以水為溶劑交聯方式,為了製備具多孔性的水膠材料,利用二氯甲烷作為溶劑並且採用溶劑誘導相分離方法製備水膠。此外混合不同比例之聚乙二醇及泊洛沙姆探討高分子與溶劑作用力、高分子網絡形成行為對水膠性質所產生的影響。
透過澎潤系數發現經SIPS方法水膠相對同成分經傳統交聯方式較大,由掃描式電子顯微鏡 (SEM)可以觀察經相分離法水膠表面具多孔性結構,另外水膠物理性質受在溶劑中的微結構與不同分子量導致在網絡形成過程的差異影響,泊洛沙姆-聚乙二醇動態機械性質受交聯密度減少而降低,加速降解實驗隨高分子鏈性質與型態而不同。於動物相容性實驗,經相分離之泊洛沙姆-聚乙二醇水膠被組織包覆,然而經傳統製備方法則顯示某區塊裸露。另外也利用網狀互穿網絡提升機械性質以及同時保留多孔特性,對於人工角膜襯裙之研發具相當之潛力。 | zh_TW |
| dc.description.abstract | In this study, we investigated the potentiality and characterized properties of the artificial cornea skirt material. Hydrogels based on poly(ethylene glycol) (PEG) and Poloxamer 407 (P407) macromers are prepared by photo-curing. The terminal hydroxyl groups of macromers are modified to acrylated functional groups, and further characterized by NMR to confirm acrylation. To obtain porous hydrogel, dichloromethane is utilized and porous hydrogels are carried out by undergoing solvent-induced phase separation (SIPS) compared with conventional hydrogels fabricated from aqueous solutions. Variable weight ratios of P407-PEG hydrogels are prepared to study the interaction between macromers and solvents and the process during polymer network formation that influence hydrogel properties.
Swelling ratios of DCM-based hydrogels are higher than the corresponding hydrogels fabricated by conventional method. Porous structure within DCM-based hydrogels is viewed by SEM. Moreover, physical properties are affected by microstructure in solvents and different molecular weight resulting in different network formation pathway. The dynamic mechanical strength decreases with the crosslink density of P407-PEG hydrogels. In accelerated degradation studies, both nature of chains and morphology play a role in degradation. As for biocompatibility, the DCM-based P407-PEG hydrogels are encapsulated by rats tissue and reveal different outcomes compared to conventional method. Enhancement in mechanical strength is carried out by interpenetrating polymer network (IPN) methodology and meanwhile retains porous structure. The materials show potential for artificial cornea skirt design and further applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:04:38Z (GMT). No. of bitstreams: 1 ntu-103-R01549022-1.pdf: 4913343 bytes, checksum: dd23debd2c45daf88677ec811fa05b39 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝..............................................................................................................................I
摘要............................................................................................................................II Abstract.....................................................................................................................III List of Figures.........................................................................................................VIII List of Tables..........................................................................................................XIV Chapter 1. Introduction................................................................................................1 Chapter 2. Litature Review..........................................................................................3 2-1 Keratoprostheses...........................................................................................3 2-1-1 Boston KPros.....................................................................................4 2-2-1 AlphaCor............................................................................................6 2-2 Hydrogels......................................................................................................8 2-2-1 Hydrogels for Engineering Application.............................................8 2-2-2 Poly(ethylene glycol) (PEG) Hydrogels............................................9 2-3-2 Poloxamer 407 (Pluronic F127).......................................................10 2-3 Nucleophilic Acyl Substitution...................................................................13 2-4 Macroporous Morphology Fabricated via Solvent Induced Phase Separation..................................................................................................16 2-5 Interpenetrating Polymer Network (IPN) ...................................................22 Chapter 3. Experimental................................................................................................ 23 3-1 Materials and Experiments.............................................................................. 23 3-2 Synthesis of Diacrylated-Terminated Macromers by Nucleophilic Acyl Substitution.................................................................................................... 26 3-2-1 Synthesis of Poly(ethylene glycol) Diacrylate (PEGDA).................... 26 3-2-2 Synthesis of Poloxamer 407 Diacrylate (P407DA).............................. 28 3-3 Hydrogels Preparation..................................................................................... 30 3-3-1 Poly(ethylene glycol) (PEG) Hydrogel Fabrication............................. 30 3-3-2 Poloxamer 407- Poly(ethylene glycol) (P407-PEG) Hydrogel Fabrication........................................................................................... 32 3-4 Characterization of Macromers and Hydrogels............................................... 36 3-4-1 1H Nuclear Magnetic Resonance (1H NMR) Characterization of Macromers........................................................................................... 36 3-4-2 Equilibrium Swelling of Hydrogels..................................................... 36 3-4-3 Scanning Electronic Microscopy.......................................................... 37 3-4-4 Dynamic Mechanical Measurements of Hydrogels............................. 38 3-4-4-1 Rheometer................................................................................. 38 3-4-4-2 Dynamic Mechanical Analyzer (DMA).................................... 39 3-4-5 Accelerated Degradation Tests............................................................. 39 3-4-5-1 Hydrolytic Degradation............................................................ 39 3-4-5-2 Oxidative Degradation.............................................................. 39 3-4-6 Mercury Poroismetry............................................................................ 40 3-4-7 Subcutanous Implantation Studies....................................................... 42 3-4-8 Interpenetrating Polymer Network....................................................... 43 Chapter 4. Results and Discussion................................................................................. 45 4-1 1H Nuclear Magnetic Resonance (1H NMR) Spectrum of Macromers...........45 4-2 Equilibrium Swelling of Hyrogels................................................................... 47 4-3 Scanning Electronic Microscopy (SEM) Images of Hydrogels...................... 52 4-4 Dynamic Mechanical Properties...................................................................... 61 4-5 Accelerated Degradation.................................................................................. 68 4-6 Porosity and Pore Size Distribution................................................................. 72 4-7 Subcutaneous Implantation.............................................................................. 76 4-8 Interpenetrating Polymer Networks (IPNs) of P407-PEG/PAA...................... 79 Chapter 5. Conclusion.................................................................................................... 83 Reference....................................................................................................................... 86 | |
| dc.language.iso | zh-TW | |
| dc.title | 高度多孔性人工角膜襯裙之開發與應用 | zh_TW |
| dc.title | Development and Application of Highly Porous Artificial Cornea Skirt | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王一中(I-Jong Wang) | |
| dc.contributor.oralexamcommittee | 芮祥鵬(Shiang-Peng Rwei),陳儀帆(Yi-Fan Chen),程耀毅(Yau-Yi Cheng) | |
| dc.subject.keyword | 人工角膜襯裙,泊洛沙姆-聚乙二醇水膠,多孔結構,溶劑誘導相分離法, | zh_TW |
| dc.subject.keyword | artificial cornea skirt,P407-PEG hydrogel,porous structure,solvent-induced phase separation., | en |
| dc.relation.page | 91 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
