請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18424
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪傳揚(Chwan-Yang Hong) | |
dc.contributor.author | Kuan-Yu Chen | en |
dc.contributor.author | 陳寬宇 | zh_TW |
dc.date.accessioned | 2021-06-08T01:04:32Z | - |
dc.date.copyright | 2014-09-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-20 | |
dc.identifier.citation | Alcantara, E., et al. (1994). 'Effects of heavy metals on both induction and function of root Fe (lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants.' Journal of Experimental Botany 45(12): 1893-1898.
Asada, K. (1992). PRODUCTION AND SCAVENGING OF ACTIVE OXYGEN IN CHLOROPLASTS. Scandalios, J. G.: 173-192. Asada, K., et al. (1994). 'Production and action of active oxygen species in photosynthetic tissues.' Causes of photooxidative stress and amelioration of defense systems in plants.: 77-104. Baker, A., et al. (1994). 'Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae).' New Phytologist 127(1): 61-68. Baker, A. J. M. and R. R. Brooks (1989). 'TERRESTRIAL HIGHER PLANTS WHICH HYPERACCUMULATE METALLIC ELEMENTS A REVIEW OF THEIR DISTRIBUTION ECOLOGY AND PHYTOCHEMISTRY.' Biorecovery 1(2): 81-126. Barber, A. and E. Brennan (1974). 'PHYTOTOXIC EFFECTS OF CADMIUM.' Phytopathology 64(5): 578-578. Barcelo, J. and C. Poschenrieder (1990). 'Plant water relations as affected by heavy metal stress: a review.' Journal of Plant Nutrition 13(1): 1-37. Barcelo, J., et al. (1986). 'CADMIUM-INDUCED DECREASE OF WATER-STRESS RESISTANCE IN BUSH BEAN-PLANTS (PHASEOLUS-VULGARIS L CV CONTENDER) .1. EFFECTS OF CD ON WATER POTENTIAL, RELATIVE WATER-CONTENT, AND CELL-WALL ELASTICITY.' Journal of plant physiology 125(1-2): 17-25. Blokhina, O., et al. (2003). 'Antioxidants, oxidative damage and oxygen deprivation stress: a review.' Annals of botany 91(2): 179-194. Brooks, R. R. (1998). Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, CAB international. Celik, A., et al. (2001). 'Engineering the active site of ascorbate peroxidase.' European Journal of Biochemistry 268(1): 78-85. Chaffei, C., et al. (2004). 'Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy.' Plant and Cell Physiology 45(11): 1681-1693. Chen, C. and M. B. Dickman (2005). 'Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii.' Proceedings of the National Academy of Sciences of the United States of America 102(9): 3459-3464. Chen, S. L. and C. H. Kao (1995). 'Cd induced changes in proline level and peroxidase activity in roots of rice seedlings.' Plant Growth Regulation 17(1): 67-71. Chen, Z. and D. Lee (1997). 'Evaluation of remediation techniques on two cadmium-polluted soils in Taiwan.' in: I.K. Iskandar, D.C. Adriano (Eds.), Remediation of Soils Contaminated with Metals, Science Reviews, Northwood, UK,: 209-223 Chew, O., et al. (2003). 'Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants.' Journal of Biological Chemistry 278(47): 46869-46877. Clemens, S. (2006). 'Evolution and function of phytochelatin synthases.' Journal of plant physiology 163(3): 319-332. Davison, P., et al. (2002). 'Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis.' Nature 418(6894): 203-206. del Rio, L. A., et al. (2006). 'Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling.' Plant Physiology 141(2): 330-335. Foyer, C. H. and B. Halliwell (1976). 'The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism.' Planta 133(1): 21-25. Hall, J. (2002). 'Cellular mechanisms for heavy metal detoxification and tolerance.' Journal of Experimental Botany 53(366): 1-11. Henrissat, B., et al. (1990). 'Structural homology among the peroxidase enzyme family revealed by hydrophobic cluster analysis.' Proteins: Structure, Function, and Bioinformatics 8(3): 251-257. Hernandez, L., et al. (1996). 'Alterations in the mineral nutrition of pea seedlings exposed to cadmium 1.' Journal of Plant Nutrition 19(12): 1581-1598. Ikeda, M., et al. (2004). 'Dietary cadmium intake in polluted and non-polluted areas in Japan in the past and in the present.' International archives of occupational and environmental health 77(4): 227-234. Ishikawa, T., et al. (2005). 'Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells.' Plant and Cell Physiology 46(8): 1264-1271. Jespersen, H., et al. (1997). 'From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase.' Biochem. J 326: 305-310. Krupa, Z. (1988). 'Cadmium‐induced changes in the composition and structure of the light‐harvesting chlorophyll a/b protein complex II in radish cotyledons.' Physiologia Plantarum 73(4): 518-524. Larsson, E. H., et al. (1998). 'Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus.' Journal of Experimental Botany 49(323): 1031-1039. Liu, W., et al. (2004). 'Viola baoshanensis, a plant that hyperaccumulates cadmium.' Chinese Science Bulletin 49(1): 29-32. Liu, Y.-T., et al. (2011). 'Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator,< i> Tagetes patula</i>.' Journal of hazardous materials 189(3): 724-731. Lone, M. I., et al. (2008). 'Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives.' Journal of Zhejiang University Science B 9(3): 210-220. McLaughlin, M. J., et al. (1999). 'Metals and micronutrients–food safety issues.' Field crops research 60(1): 143-163. Mei, H., et al. (2009). 'Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4.' New Phytologist 183(1): 95-105. Mittler, R. (2002). 'Oxidative stress, antioxidants and stress tolerance.' Trends in plant science 7(9): 405-410. Mittler, R., et al. (1998). 'Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco.' The Plant Cell Online 10(3): 461-473. Mittler, R., et al. (2004). 'Reactive oxygen gene network of plants.' Trends in plant science 9(10): 490-498. Munne-Bosch, S. and L. Alegre (2003). 'Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents.' Plant Physiology 131(4): 1816-1825. Najami, N., et al. (2008). 'Ascorbate peroxidase gene family in tomato: its identification and characterization.' Molecular Genetics and Genomics 279(2): 171-182. Noctor, G. and C. H. Foyer (1998). 'Ascorbate and glutathione: keeping active oxygen under control.' Annual review of plant biology 49(1): 249-279. Nussbaum, S., et al. (1988). 'Regulation of assimilatory sulfate reduction by cadmium in Zea mays L.' Plant Physiology 88(4): 1407-1410. Perfus‐Barbeoch, L., et al. (2002). 'Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status.' The Plant Journal 32(4): 539-548. Pnueli, L., et al. (2003). 'Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)‐deficient Arabidopsis plants.' The Plant Journal 34(2): 187-203. Prokop, Z., et al. (2003). 'Mobility, bioavailability, and toxic effects of cadmium in soil samples.' Environmental Research 91(2): 119-126. Rao, A. S. V. C. and A. R. Reddy (2008). Glutathione reductase: A putative redox regulatory system in plant cells. Rauser, W. E. (1978). 'Early effects of phytotoxic burdens of cadmium, cobalt, nickel, and zinc in white beans.' Canadian journal of Botany 56(15): 1744-1749. Rivetta, A., et al. (1997). 'Involvement of Ca2+‐calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination.' Plant, Cell & Environment 20(5): 600-608. Root, R. A., et al. (1975). 'UPTAKE OF CADMIUM - ITS TOXICITY, AND EFFECT ON IRON RATIO IN HYDROPONICALLY GROWN CORN.' Journal of Environmental Quality 4(4): 473-476. Roth, U., et al. (2006). 'Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+.' Journal of Experimental Botany 57(15): 4003-4013. Sanchezcasas, P. and D. F. Klessig (1994). 'A SALICYLIC ACID-BINDING ACTIVITY AND A SALICYLIC ACID-INHIBITABLE CATALASE ACTIVITY ARE PRESENT IN A VARIETY OF PLANT-SPECIES.' Plant Physiology 106(4): 1675-1679. Scandalios, J. G. (1993). 'OXYGEN STRESS AND SUPEROXIDE DISMUTASES.' Plant Physiology 101(1): 7-12. Schutzendubel, A. and A. Polle (2002). 'Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization.' Journal of Experimental Botany 53(372): 1351-1365. Sharma, A., et al. (1985). 'Modification of cadmium toxicity in biological systems by other metals.' Curr. Sci 54: 539-549. Sharma, P. and R. Dubey (2007). 'Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum.' Plant Cell Rep 26(11): 2027-2038. Sharma, P. and R. S. Dubey (2005). 'Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings.' Plant Growth Regulation 46(3): 209-221. Sharma, S. S. and K.-J. Dietz (2006). 'The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.' Journal of Experimental Botany 57(4): 711-726. Siedlecka, A. and Z. Krupa (1999). 'Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus.' Photosynthetica 36(3): 321-331. Sun, Y., et al. (2008). 'Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator< i> Solanum nigrum</i> L.' Bioresource Technology 99(5): 1103-1110. Teixeira, F. K., et al. (2004). 'Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome.' J Mol Evol 59(6): 761-770. Van Assche, F. and H. Clijsters (1990). 'EFFECTS OF METALS ON ENZYME ACTIVITY IN PLANTS.' Plant Cell and Environment 13(3): 195-206. Verbruggen, N. and C. Hermans (2008). 'Proline accumulation in plants: a review.' Amino acids 35(4): 753-759. Welinder, K. G. (1992). 'Superfamily of plant, fungal and bacterial peroxidases.' Current Opinion in Structural Biology 2(3): 388-393. Xu, J., et al. (2010). 'Salt affects plant Cd-stress responses by modulating growth and Cd accumulation.' Planta 231(2): 449-459. Yang, X., et al. (2004). 'Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance).' Plant and soil 259(1-2): 181-189. 魏甄蓮 (2008). '孔雀草非洲鳳仙與美女櫻對污染土壤鎘鉛之植生萃取研究.' 臺灣大學農業化學研究所學位論文: 1-96 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18424 | - |
dc.description.abstract | 孔雀草(Tagetes patula)是一種常見的景觀花卉,已被證實為一種鎘的累積植物。我們過去的研究發現鎘會誘導孔雀草抗壞血酸過氧化酶(Ascorbate peroxidase, APX)活性增加APX是重要的抗氧化酵素,可分解H2O2,為了解APX對孔雀草鎘耐受性扮演的角色,本試驗進行孔雀草APX基因的選殖與功能分析。試驗中利用RACE-PCR方法,從孔雀草中選殖出一個由251個胺基酸組成的APX全長cDNA,命名為TpAPX1。該基因具有8個外顯子與7個內顯子,演化樹分析顯示其與草莓的APX親緣性最接近。TpAPX1在花有較高表現,老葉最少,受CdCl2 誘導,但受到銅與三價砷的抑制。功能分析部分,在大腸桿菌大量表現TpAPX1可表達出具有APX活性蛋白。次細胞定位分析顯示TpAPX1表現在細胞質。大量表現TpAPX1在阿拉伯芥中,可使轉殖阿拉伯芥在100μM CdCl2 與0.1 μM Methyl Viologen中,具有比一般植株(WT)較高的逆境抗性,顯示TpAPX1具有幫助植物抵抗氧化逆境的功能。 | zh_TW |
dc.description.abstract | Tagetes patula, a common landscape plant, has been identified to be a cadmium (Cd)-accumulator. According to our previous study, the activity of ascorbate peroxi-dase (APX) in T. patula can be induced by CdCl2 treatment. APX that can detoxify H2O2 using ascorbate as a substrate plays a key role in protect on plants from oxidative stress. To evaluate the physiological role of APX in T. patula under CdCl2 treatment, rapid amplification of cDNA ends (RACE) method was used to clone the APX gene in T. patula. The full-length cDNA of TpAPX1 contains a 753 bp open reading frame which encodes 251 amino acids with an estimated molecular weight of 25 kDa. The genomic structure of TpAPX1 has 8 exons and 7 introns. Phylogenetic analysis revealed TpAPX1 has high similarity with Fragaria x ananassa APX. TpAPX1 was expressed in all tissues of TpAPX1 , and the highest and lowest mRNA levels were in flowers and roots, respectively. TpAPX1 mRNA level was induced by CdCl2 but
repressed by CuSO4 and As2O3. The expression of TpAPX1 in E. coli validated that it can be translated as a protein with APX activity. PEG-mediated transient expression with a TpAPX1-GFP fusion construct in Arabidopsis protoplast shwowed that TpAPX1 localizes in cytosol. Ectopic expression of TpAPX1 in Arabidopsis increased Methyl Viologen and Cd2+ stress tolerance. In conclusion, cytosolic TpAPX1 plays an important role of oxidate stress tolerance in plant. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:04:32Z (GMT). No. of bitstreams: 1 ntu-103-R01623021-1.pdf: 1868967 bytes, checksum: 2a43c6cebbb9a8bd0830aaf59e87e3ec (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄 2
摘要 5 Abstract 6 縮寫字對照表 7 壹、前言 8 1.植物與氧化逆境 8 1.1.氧化逆境的生成與影響 8 1.2.植物的抗氧化系統 8 2.鎘 12 2.1.鎘毒害 12 2.2超累積植物 14 2.3鎘誘導氧化逆境 15 2.4 孔雀草 Tagetes putala 16 貳、研究目的 17 參、材料與方法 18 1.試驗材料 18 2.未知基因選殖 18 3.質粒的構築 22 4.質粒製備 23 5.大腸桿菌(E.coli)質粒DNA純化 24 6.阿拉伯芥轉殖 25 7.APX逆境誘導分析 28 8.次細胞定位分析 31 肆、結果 32 1.孔雀的APX基因選殖 32 2.APX基因表現分析 33 3.TpAPX1功能分析 33 伍、討論 35 陸、結論 38 未來展望 39 捌、引用文獻 40 玖、圖 46 圖1、利用RACE選殖出孔雀草的APX基因(A)不同物種APX保守區位,黑色實線為引子設計區位;(B)RACE選殖之電泳結果。 46 圖2、TpAPX1 cDNA全長序列,” * ”表示起始密碼子,” - “表示為終止密碼子。圈圈表示功能性胺基酸,框框表示功能性區位。(APLMLRLAWHSA)為APX的活性位點序列 (peroxidases active site motif);155-165 (DIVTLSGGHTL)為過氧化氫與血紅素結合位點序列 (peroxidases heme ligand motif) 47 圖3、APX胺基酸序列比對結果。由6個不同物種cytosolic isform APX 與孔雀草APX胺基酸序列進行比對,三角形代表APX的保守胺基酸。(物種請參照附錄3) 48 圖4、TpAPX1基因序列及結構。( A)基因體組序列,小寫字母內顯子序列。B. TpAPX1基因cDNA與染色體組DNA的結構,黑色為外顯子,白色為內顯子。 49 圖5、利用RACE選殖出孔雀草的UBQ10基因(A)不同物種UBQ保守區,黑色實線為引子設計區位;(B)RACE選殖的電泳結果,框框內的條帶為目標基因之條帶。 50 圖6、TpUBQ10 cDNA全長序列,” * ”表示起始密碼子,” - “表示為終止密碼子。 51 圖7、TpAPX1之演化樹親緣分析。利用neighbor joining 方法,bootstraps value 為1000 繪製出TpAPX1 與其他物種同源基因的演化關係圖。(物種完整學名與登入碼accession number 如附錄3) 52 圖8、孔雀草在自然狀況下,水耕栽培42天,取剛抽出的新葉 (New leaf)、子葉與第一對葉 (Old leaf)、未開花之花苞 (Flower)、成熟花內的種子 (Seed)與根尖部位 (Root)等,並以RT-PCR分系各同組織TpAPX1的表現分析。 53 圖9、以14天大的孔雀草小苗分別處理鎘、銅、鋅、鉛、鉻與砷,由低到高各五個不統的濃度,處理2小時後,進行TpAPX1 RT-PCR分析。(A)地上部(B)地下部。 54 圖10、以14天大的孔雀草小苗各別進行鎘、鹽與低溫處理,並分析不同時間點下TpAPX1 表現量(A) 10 μM Cd處理下,不同時間點TpAPX1表現分析;(B)150 mM 氯化鈉處理之不同時間點TpAPX1表現分析;(C) 4℃處理之不同時間點TpAPX1表現分析。 55 圖11、TpAPX1在大腸桿菌系統大量表現分析結果。(A)APX活性分析;(B)大量表現APX蛋白質染色結果;(C)Zymogram APX 活性分析, 56 圖12、TpAPX1次細胞定位分析。圖為阿拉伯芥的原生質體,綠色為螢光蛋白發出的螢光,紅色為葉綠體的自發螢光。上圖(GFP)為只有GFP構築的表現結果,下圖為(TpAPX-GFP)為TpAPX1 於C端接上GFP構築的表現結果。 57 圖13、OE TpAPX1轉殖植物分析。挑選1-1、2-3、3-3轉殖系的T3代種子,種種植三週挑選葉片進行分析(A)西方墨點分析;(B)APX Zymogram分析。 58 圖14、大量表現TpAPX1轉殖植物鎘耐受性分析。挑選1-1、2-3、3-3轉殖系的T3代種子,種植於含0、50 μM、100 μM 的1/2MS 培養基中。 59 圖15、大量表現TpAPX1轉殖植物MV耐受性分析。挑選1-1、2-3、3-3轉殖系的T3代種子,種植於含0、0.05 μM、0.5 μM 的1/2MS 培養基中。 60 圖16、轉殖用質粒構築設計。A、大量表現目標基因於大腸桿菌系統的構築。B、將報導基因GFP接皆在目標基因C端,為次細胞定位分析的構築。C、大量表現目標基因於阿拉伯芥的構築。 61 拾、附錄 62 附錄1.培養基 62 附錄2. 實驗藥品 64 附錄3 各物種縮寫與登入碼 70 附錄.4引子列表 71 | |
dc.language.iso | zh-TW | |
dc.title | 孔雀草抗壞血酸過氧化酶基因之選殖與功能分析 | zh_TW |
dc.title | Molecular Cloning and Functional Characterization of an Ascorbate Peroxidase Gene from Tagetes Patula L. | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張孟基(Men-Chi Chang),蔡育彰(Yu-Chang Tsai),陸重安(Chang-An Lu),黃文理(Wen-Li Huang) | |
dc.subject.keyword | 孔雀草,鎘,抗壞血酸過氧化氫?,cDNA 末端快速放大法, | zh_TW |
dc.subject.keyword | Tagetes patula,cadmium,Ascorbate peroxidase,Rapid amplification of cDNA ends (RACE), | en |
dc.relation.page | 71 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。