Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢(Tung-Han Chuang)
dc.contributor.authorWei-Ting Yehen
dc.contributor.author葉威廷zh_TW
dc.date.accessioned2021-06-08T01:03:23Z-
dc.date.copyright2014-09-10
dc.date.issued2014
dc.date.submitted2014-09-05
dc.identifier.citation陸. 參考文獻
〔1〕 W. Thomson, “On a mechanical theory of thermoelectric currents”, Edinburgh, 1851, p.91-98.
〔2〕 H.J. Goldsmid and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration”m British Journal of Applied Physics 5, 1954, p.386-390.
〔3〕 Y. Hori and D. Kusano, “Fabrication and evaluation of Bi-Te/Pb-Te cascade-type thermoelectric module”, 2003, 22nd International Conference on Thermoelectrics
〔4〕 Elgenk M S, Saber H H, and Caillat T. Energ., “Efficient Segmented Thermoelectric Unicouples for Space Power Applications”, Convers. Managel., 44(11), 2003, p.1755-1759.
〔5〕 J. S. Lin, K. Tanihata, Y. Miyamoto, and H. Kido: Proc.4th Int. Symp. Functionally Graded Materials (FGM96), Tsukuba, Japan, p.599(1996).
〔6〕 M.S. El-Genk, H.H Saber, and T. Caillat, Energy Convers. Manage, 44, 2003, p.1755-1772.
〔7〕 Wen P. Lin ,Daniel E. Wesolowski and Chin C. Lee, “Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules”, Journal Of Materials Science: Materials In Electronics, Online First™, 25 January, 2011.
〔8〕 James L.Bierschenk,Richard A.Howarth and Norbert J.Socolowski, United States Patent: “Thermoelectric Cooler”,1995, Num.5441576
〔9〕 Click P.B. and Marlow R., 1978 “ Reliability and Failure Modes of Thermoelectric Heat Pumps.”, Proceedings of the Second International Conference on Thermoelectric Energy Conversion, Arlington TX., p.115-120.
〔10〕 T.M. Ritzer, P.G. Lau and A.D. Bogard, “A Critical Evaluation of Today’s Thermoelectric Modules.”, Proc. 16th Inter. Conf. on Thermoelectrics, 1997, p.619.
〔11〕 Rafal Zybala, Krzysztof T. Wojciechowski, Masksymilian Schmidt and Ryszard Mania, “Junctions and Diffusion Barriers for High Temperature Thermoelectric Modules”, Materialy Ceramiczne/Ceramic Materials, Vol. 62, 2010, p.481-485.
〔12〕 T.J Seebeck, Magnetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 1823, 265.
〔13〕 Gerald Mahan, Brian Sales, and Jeff Sharp, Physics Today, March, 1997,42.
〔14〕 朱旭山, 「熱電材料與元件之原理與應用」, 電子與材料雜誌,第22期,2004,第78-79頁。
〔15〕 B. Poudel, Q. Hao, Y. Ma, and Y.C. Lan, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys.”, Science, Vol. 320, 2008, p.634.
〔16〕 J.S. Rhyee, K.H. Lee, S.M. Lee and E. Cho, “Peierls distortion as a route to high thermoelectric performance in In4Se3-delta crystals”, Nature, Vol. 459, 2009, p.965-968.
〔17〕 K.F. Hsu, S. Loo, F. Guo and W. Chen, “Cubic AgPbmSbTem+2: Bulk Thermoelectric Materials with High Figure of Merit.”, Science, Vol.303, 2004, p.818-821.
〔18〕 H. Wang, J.F. Li and C.W. Nan, “High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering.”, Appl. Phys. Lett., Vol. 88, 2006, p.092101-092104
〔19〕 J. Androulakis, K.F. Hsu and R. Pcionek, “Nanostructuring and High Thermoelectric Efficiency in p-type Ag(Pb1-ySny)mSbTem+2.”, Advanced Materials, Vol. 18, 2006, p.1170-1173.
〔20〕 A. Kosuga, K. Kurosaki, H. Muta and S. Yamanaka, “Thermoelectric properties of p-type (AgSbTe2)x(Pb0.5Sn0.5Te)1-x(x=0.05, 0.09, 0.2).”, Journal of Alloys and Compounds, Vol. 416, 2006, p.218-221.
〔21〕 J. Wu, J. Yang, H. Zhang and S. Zhang, “Fabrication of Ag-Sn-Sb-Te based thermoelectric materials by MA-PAS and their properties.”, Journal of Alloys and Compounds, Vol. 507, 2010, p.167-171.
〔22〕 J. Androulakis, R. Pcionek and E. Quarez, “Coexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material Ag0.85SnSb1.15Te3.”, Chemistry Materials, Vol. 18, 2006, p.4719-4721.
〔23〕 郭玟伶,'燒結製程對含鎵之鉍銻鍗熱電材料性質影響之研究', 國立台北科技大學材料科學與工程研究所碩士論文,指導教授:陳貞光。
〔24〕 A. Bali, I.H. Kim, P. Rogl and R. C. Mallik,”Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions.”, Journal of Electronic Materials, Vol. 43, 2014, p.1630-1638.
〔25〕 G.S. Nolas, G.A. Slack and J.L. Cohn, “The Next Generation of Thermoelectric Materials.”, Proceeding of the 17th International Conference in Thermoelectrics, 1998, p.1-9.
〔26〕 T.C. Harman, P.J. Taylor and M.P. Walsh, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science, Vol. 297, 2002, p.2229-2232.
〔27〕 R. Venkatasubramanian, E. Siivola and T. Colpitts, “Thin-film Thermoelectric Devices with High Room-temperature figures of merit”, Nature, Vol. 413, 2001, p.599-602.
〔28〕 A.I. Boukai, Y. Bunimovich and J.K. Yu, “Silicon Nanowires an Efficient Thermoelectric Materials”, Nature, Vol. 451, 2008, p. 168-171.
〔29〕 A.I. Hochbaum et al, Nature, Vol. 451, 2008, p.163-167.
〔30〕 T.H. Chuang, H.J. Lin, and C.W. Tsao, J. Electron. Mater. 35, 2006, 1566-1570.
〔31〕 M.W. Liang, T.E. Hsieh, S.Y. Chang and T.H. Chuang, 'Thin-Film Reactions during Soldering of Cu/Ti/Si and Au/Cu/Al2O3 with Sn Interlayer.', Journal of Electronic Materials, Vol. 32, 2003, p952-956.W.C. Welch, J. Chae and K. Najafi, IEEE Trans. Adv. Packag. 28 , 2005, 643-649.
〔32〕 W. C. Welh, J.Chae and K. Najafi, 'Transfer of Metal MEMS Packages Using a Wafer-Level Solder Transfer Technique.', IEEE Trans. Adv. Packag, Vol. 28, 2005, p.643-649.
〔33〕 R. I. Made, C.L. Gan, L.L.Yan, A. Yu, S.W. Yoon, J.H. Lau, and C.K. Lee, J. Electron. Mater. 38, 2009, 365-371.
〔34〕 D.M. Jacobson, and S. P. S Sangha, 'Novel Application of Diffusion Soldering.', Solder. Surf. Mt. Technol. Vol.8, 1996, p 2-15.
〔35〕 Y.C. Chen, W.W. So and C.C. Lee, 'A Fluxless Bonding Technology Using Indium-Silver Multilayer Composites.', IEEE Trans. on CPMT, Vol. 20, 1997, p.46-57.
〔36〕 P. Ramm, M. J. Wolf, A. Klumpp and B. Wunderle, 'Through Silicon Via Technology Processes and Reliability for Wafer-Level 3D System Integration.', IEEE Trans. on CPMT, 2008, P.846-851.
〔37〕 http://web.nch.edu.tw/~lschang/Thermoelectric.htm.
〔38〕 CRC Handbook of Thernoeletric, Edited by D.M. Rowe, CRC Press LLC, USA.
〔39〕 S. Sano, H. Mizukami and H. Kaibe, “High-effiency Thermoelectric Power Generation System”, Komatsu Technical Report, Vol. 49, 2003, No.152.
〔40〕 黃育智, 楊清峰, 陳信文, '軟銲', 科學期刊, 2007, 416期, pp. 58-63.
〔41〕 P.T. Vianco, 'Solder Alloys: A Look at the Past, Present and Future', Welding Journal, 1997, p.45-49.
〔42〕 P.T. Vianco and D.R. Freae, 'Issue in the Replacement of Lead-Bearing', JOM, Vol. 45, 1993, p.14-19
〔43〕 莊東漢博士, '擴散軟銲技術在電子封裝之應用', 封裝技術電子月刊第五卷 第十一期.
〔44〕 D. M. Jacobson and G. Humpston, 'Diffusion Soldering.', Soldering and Surface Mount Technology, No. 10, 1992, pp. 27-32.
〔45〕 M. Abtew and G. Selvadury, 'Lead-Free Solders in Microelectronics', Materials Science & Engineering R-Reports', Vol. 27, 2000, pp. 96-141.
〔46〕 AWS Brazing Manual,4thed,American Weling Society,Miami,Florida.
〔47〕 Chao-hong Wang, Hsien-hsin Chen, 'Study of the Effects of Zn Content on the Interfacial Reactions Between Sn-Zn Solders and Ni Substrates at 250°C.', Journal of Electronic Materials, Vol. 39, 2010, pp. 2375-2381.
〔48〕 H. Wada, K. Takahashi and T. Nishizaka, 'Electroless nickel plating to Bi-Te sintered alloy and its properties.' Journal of Materials Science Letters, Vol. 9, 1990, pp. 810-812.
〔49〕 R. M. Redstall and Studd, in CRC Handbook of Thermoelectrics,edited by D.M.Rowe(CRC, Boca Raton, FL, 1995, p. 641-643.
〔50〕 Y. C. Lan, D. Z. Wang, G. Chen, and Z. F. Ren, 'Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials.', Applied Physics Letters, Vol. 92, 2008, p101910-1-101910-3.
〔51〕 D. Vasilevskiy, F. Roy, E. Renaud, R.A. Masut, S. Turenne ' Mechanical Properties of the Interface between Nickel Contact and Extruded (Bi1-xSbx)2(Te1-ySey)3 Thermoelectric Materials', 25th International Conference on Thermoelectrics (ICT), 2006, p.666.
〔52〕 Bterschenk et al., United States Patent, Patent number: 1995, 5441576.
〔53〕 Takehiko Sato, Mino, Kazuo Kamada, Hirakata, United StatesPatent:'Thermoelectric Piece and Process of Making the Same.', 2000, Num.6083770.
〔54〕 T. Kacsich, C. Kolawa and J.P. Fleirual, 'Films of Ni-7%, Pd, Pt and Ta-Si-N as diffusion barriers for copper on Bi2Te3', J. Phys. D Appl. Phys.Vol. 31, 1998, p.2406-2411.
〔55〕 J.L. Cui, X.B. Zhao, W.M. Zhao and Y.P. Lu, 'Preparation, thermoelectric properties and interface analysis of n-type graded material FeSi2/Bi2Te3” Materials Science and Engineering, B94, 2002, p.223-228.
〔56〕 D. Zhao, H. Geng and X. Teng, 'Fabrication and reliability evaluation of CoSb3/W-Cu thermoelectric element', Journal of Alloys and Compounds, Vol. 517, 2012, p.198-203.
〔57〕 J. Fan, L. Chen and S. Bai, 'Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer', Materials Letters, Vol. 58, 2004, p.3876-3878.
〔58〕 H. Xia, F. Drymiotis, C.L. Chen and A. Wu, 'Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications', J Mater Sci, Vol. 49, p.1716-1723.
〔59〕 T.Y. Lin, C.N. Liao and A.T. Wu, 'Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials.', Journal of Electronic Materialls, Vol. 41, 2012, p.153-158.
〔60〕 S.W. Chen and C.N. Chiu, Scripta Mater, Vol. 56, 2007, p.97.
〔61〕 C.N. Liao and Y.C. Huang, J. Mater. Res. Vol. 25, 2010, p. 391.
〔62〕 C.N. Liao and C.H. Lee, J. Mater Res. Vol. 23, 2008, p.3303.
〔63〕 Jing-Chie Lin, Long-Wei Huang, Guh-Yaw Jang and Sheng-Long Lee, 'Solid liquid interdiffusion bonding between In-coated silver thick films.', Thin solid film, Vol. 410, 2002, p212-221.
〔64〕 G. Humpston, D. M. Jacobson and S. P. S. Sangha, 'A new low temperature process for joining carat gold jewellery.', Gold Bulletin, Vol. 26, 1993, p.90-104.
〔65〕 G. Humpston and D. M. Jacobson, 'Diffusion soldering for electronics manufacturing.” Endeavour, Vol. 18, 1994, p.55-60.
〔66〕 G.A. Lopez, S. Sommadossi W. Gust and E.J. Mittemeijer, 'Phase Characterization of Diffusion Soldered Ni/Al/Ni Interconnections.', Interface Science, Vol. 10, 2002, p.13-19.
〔67〕 Thomas Studnitzky and Rainer Schmid-Fetzer, 'Phase Formation and Diffusion Slodering in Pt/In, Pd/In, and Zr/Sn Thin-Film systems.', Journal of Electronic Materials, Vol. 32, 2003, p.70-80.
〔68〕 Silvana Sommadossi, Horacio E. Troiani and Armando Fernandez Guillermet, 'Diffusion soldering using a Gallium metallic paste as solder alloy: study of the phase formation systematics.', Journal of Materials Science, Vol. 42, 2007, p.9707-9712.
〔69〕 Bernhard Gollas, Jorg H. Albering, Katharina Schmut, Volker Pointner, Ralph Herber and Johannes Etzkorn, 'Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering.', Intermetallics, Vol. 16, 2008, p.962–968.
〔70〕 H. Liu, K. Wang, K. Aasmundtveit and N. Hoivik, 'Intermetallic Cu3Sn as Oxidation Barrier for Fluxless Cu-Sn Bonding.', Electronic Components and Technology Conference, 2010, p.853-857.
〔71〕 Huebner, H., et al., 'Microcontacts with sub-30 [mu]m pitch for 3D chip-on-chip integration.', Microelectronic Engineering, Vol. 83, 2006, p2155-2162
〔72〕 T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprazk, 'Binary Alloy Phase Diagrams' , ASM International, 1990.
〔73〕 F. BARTELS, J.W. MORRIS, JR., G. DALKE and W. GUST, 'Intermetallic Phase Formation in Thin Solid-Liquid Diffusion Couples.', Journal of Electronic Materials, Vol. 23, 1994, p.787-790.
〔74〕 Chao-Hong Wang, Hsien-Hsin Chen, Wei-Han Lai, 'Effects of Minor Amounts of Zn on the Sn-Zn/Ni Interfacial Reactions and Phase.', Journal of Electronic Materials, Vol. 40, No. 12, 2011, pp. 2436-2444.
〔75〕 Chao-hong Wang, Hsien-hsin Chen, Po-yi Li, Po-yen Chu, 'Kinetic analysis of Ni5Zn21 growth at the interface between Sn-Zn solders and Ni.', Intermetallics Vol. 22, 2012, pp. 166-175.
〔76〕 Chao-hong Wang, Hsien-hsin Chen, Po-yi Li, 'Interfacial reactions of
high-temperature Zn-Sn solders with Ni substate.', Materials Chemistry and Physics, Vol. 136, 2012, pp. 325-333.
〔77〕 Sinn-Wen Chen, Chia-Ming Hsu, Chin-yi Chou, Che-Wei Hsu, 'Isothermal section of ternary Sn-Zn-Ni phase wquilibria at 250°C.', Materials International Vol. 21, 2011, pp. 386-391.
〔78〕 W. Zhu, H. Liu, J. Wang, G. Ma, and Z. Jin, 'Interfacial Reactions Between Sn-Zn Alloys and Ni Substrates.', Journal of Electronic Materials, Vol. 39, No. 2, 2010, pp. 209-214.
〔79〕 J. Mittal, S. M. Kuo, Y. W. Lin,and K. L. Lin, 'Diffusion Behavior of Zn During Reflow of Sn-9Zn Solder on Ni/Cu Substrate.', Journal of Electronic Materials, Vol. 38, No. 12, 2009.
〔80〕 G. P. Vassilev, T. G. Acebo, and J. C. Tedenac, 'Thermodynamic optimization of the Ni-Zn system.', Journal of Phase Equilibria, Vol. 21, 2000, pp. 287-301.
〔81〕 S,Budurov, G. Vassilev, and N. Kuck:Z. Metallkd., 1978, Vol. 68, pp.226.
〔82〕 J. Schramm: Z. Metallkd., 1938, Vol. 30, pp. 122.
〔83〕 F. Lihl: Z. Metallkd., 1952, Vol. 43, pp. 310.
〔84〕 F. Lihl: Z. Metallkd., 1955, Vol. 46, pp. 438.
〔85〕 A. Malaruka and V. Melihov: Proc. Nucl. Phys. Inst., Akad. Nauk Kazakh. SSR, 1969, Vol. 9, pp. 78.
〔86〕 A. Morton: Phys. Status Solidi, 1977, Vol. 44 (1), pp. 205.
〔87〕 G. Nover and K. Schubert: J. Less-Common Met., Vol. 75, 1980, pp. 51.
〔88〕 W. Eckman: Z. Phys. Chem., 1931, vol. B12, pp. 57.
〔89〕 Y. C. Chan, M. Y. Chiu, and T. H. Chuang, 'Intermetallic Compounds formed during the Soldering Reactions of Eutectic Sn-9Zn with Cu and Ni Substrates.', Z. Metallkd, 2002, pp. 93,95-98.
〔90〕 C. Y. Chou, S. W. Chen, and Y. S. Chang, 'Interfacial reactions in the
Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni Couples.', Journal of Materials Research, Vol. 21,No. 7, 2006, pp. 1849-1856.
〔91〕 K. N. Tu and R. D. Thompson, 'Kinetics of interfacial reaction in bimetallic Cu-Sn thin films.', Acta Metallurgica, Vol.30, 1982, p.947-952.
〔92〕 S. Bader, W. Gust and H. Hieber, 'Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems.', Acta Metallurgica et Materialia, Vol. 43, 1995, p329-337.
〔93〕 H. K. Kim, H. K. Liou and K. N. Tu, 'Three-dimension morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu. ', Applied Physics Letters, Vol. 66, 1995, p.2337-2339.
〔94〕 H. K. Kim and K. N. Tu, 'Kinetic analysis of soldering reaction between eutecticSnPb alloy and Cu accompanied by ripening.' Physical Review B, Vol. 53, No.23, 1996, p.16027-16034.
〔95〕 H. K. Kim and K. N. Tu, 'Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers.', Applied Physics Letters, Vol. 66, 1995, p.2004-2006.
〔96〕 K. N. Tu, 'Cu/Sn interfacial reaction:thin-film case versus bulk case.', Materials Chemistry and Physics, Vol. 46, 1996, p.217-223.
〔97〕 U. Gosele and K. N. Tu, 'Growth kinetics of planar binary diffusion couples: Thin-film case versus Bulk cases.', J. Appl. Phys. Vol.53, 1982, p.3252-3260.
〔98〕 H. K. Kim and K. N. Tu, 'Rate of consumption of Cu in soldering accompanied by ripening.', Appl. Phys. Lett. Vol.67, 1995, p.2002-2004.
〔99〕 P. G. Kim, J. W. Jang, and K. N. Tu, 'Kinetic analysis of interfacial diffusion accompanied by intermetallic compound formation.', Journal of Applied Physics, Vol. 86, 1999, p.1266-1272.
〔100〕 K. N. Tu, 'Interdiffusion and Reaction in Bimetalloic Cu-Sn Thin Films.', Acta Metallurgica, Vol. 21, 1973, p.347-354.
〔101〕 J. S. Kang, R. A. Gagliano, G. Ghosh and M. E. Fine, 'Isothermal solidification of Cu/Sn diffusion couples to form thin-solder joints.', Journal of Electronic Materials, 2002, Vol. 31.
〔102〕 Blair, H.D, Tsung-Yu Pan and Nicholson J.M, 'Intermetallic. Compound Growth on Ni, Au/Ni and Pd/Ni Substrates with Sn/Pb, Sn/Ag, and Sn Solders.', Electronic Components & Technology Conference, 1998. 48th IEEE.
〔103〕 A. Hayashi, C.R. Kao and Y. A. Chang, 'Reactions of solid copper with pure liquid tin and liquid tin saturated with copper.', Scripta Materialia, Vol. 37, 1997.
〔104〕 P. T. Vianco, K. L. Erickson and P. L. Hopkins, 'Solid state intermetallic compound growth between copper and high temperature, tin-rich solders—part I: Experimental analysis.', Journal of Electronic Materials, Vol. 23, 1994.
〔105〕 W.M. Tang, Q. Liu and D. G. Ivey, 'Solid state interfacial reactions in electrodeposited Cu/Sn couples.', Soc. China, Vol. 20, 2010, p.90-96.
〔106〕 C. E. Ho, Y. L. Lin and C. R. Kao, 'Strong effect of Cu concentraction on the reaction between lead-free microelectronic solders and Ni.', Chemical of Materials, Vol. 14, 2002, p.949.
〔107〕 T. Laurila, V. Vuoriene and J. K. Kivilahti , 'Interfacial reactions between lead-free solders and common base materials', Materials Science and Engineering R-Reports, Vol.49, 2005, p.1.
〔108〕 K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano and K. N. Tu, 'Kirkendall void formation in Eutectic SnPb solder joints on bare Cu and its effect on joints reliability', Journal of Applied Physics, Vol. 97, 2005.
〔109〕 T. C. Chiu, K. Zeng, R. Stierman, D. Edwards and K. Ano 'Effect of thermal Aging on board Level Drop Reliability for Pb-free BGA Packages, IEEE Electronic Components and Technology Conference 54th, Vol. 2, 2004, p.1256.
〔110〕 V. Simic and Z. Marinkovic, 'Room temperature interactions in Ag-metals thin films couples.', Thin Solid Film, Vol. 61, 1979, p.149.
〔111〕 Z. Marinkovic and V. Simic 'Kinetics of reaction at room temperature in thin silver-metal couple.', Thin Solid Film, Vol. 195, 1991, p.127.
〔112〕 J. F. Li, P. A. Agyakwa and C.M. Johnson, “Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process” Acta Materialia, Vol. 58, 2010, p3429-3443.
〔113〕 J.F. Li, S.H. Mannan , M.P. Clode , D.C. Whalley , D.A. Hutt, Acta Mater, Vol. 54, 2006, p.2907.
〔114〕 J.F. Li, S.H. Mannan , M.P. Clode , D.C. Whalley , D.A. Hutt, Acta Mater, Acta Mater, Vol. 55, 2007, p.737.
〔115〕 S.K. SEN, A. GHORAI and A.K. BANDYOPADHYAY “INTERFACIAL REACTIONS IN BIMETALLIC Ag-Sn THIN FILM COUPLES” Thin Solid Films, Vol. 155, 1987, p.243-253.
〔116〕 P. Skrzyniarz, A. Sypien, J. Wojewoda-Budka, 'Microstructure and kinectic of intermetallic phases growth in Ag/Sn/Ag join obtain as the result of diffusion soldering.', Archives of Metallurgy and Materials, Vol. 55, 2010, p.123.
〔117〕 W. G.. Bader, “Dissolution and Formation of Intermetallics in the Soldering Process, IAHS-AISH Publication International Association of Hydrological Science-Association Internationnale des Sciences Hydrologiques, 1980, p.257-268.
〔118〕 J. A. V. Beek, S. A. Stolk, and F. J. J. V. Loo, 'Multiphase Diffusion in the Systems Fe--Sn and Ni--Sn,' Zeitschrift Fur Metallkunde, Vol. 73, 1982, p. 439.
〔119〕 C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, “The effect of limited Cu supply on the soldering reactions between SnAgCu and Ni,” Journal of Electronic Materials, 35, 2006, p.1017.
〔120〕 Chwan-Ying Lee, Kwang-Lung Lin “The interaction kinetics and compound formation between electroless Ni-P and solder” Thin Soild Films, Vol. 249, No.2, 1994, p.201-206.
〔121〕 Kwang-Lung Lin and Chun-Jen Chen “The interactions between In-Sn solders and an electroless Ni-P deposit upon heat treatment”, JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, Vol. 7, No. 6, 1996, p.397-401.
〔122〕 Paul G. Harris and Kaldev S. Chaggar 'The role of intermetallic compounds in lead-free soldering', Soldering & Surface Mount Technology, Vol. 10, No. 3, 1998, p.38 – 52.
〔123〕 Chen-Nen Chiu, Chao-Hong Wang and Sinn-Wen Chen, 'Interfacial Reaction in Sn-Bi/Te Couple.', J J. Electro. Mater, Vol. 37, 2007, p.40-44.
〔124〕 Sinn-wen Chen and Chen-nan Chiu, 'Unusual cruciform pattern interfacial reactions in Sn/Te couples.', Scripta Materialia, Vol. 56, 2007, p.97-99.
〔125〕 C.H. Lee, W. T. Chen and C.N. Liao, 'Effect of antimony on vigorous interfacial reaction of Sn-Sb/Te couples', Journal of Alloys and Compounds, Vol. 509, 2011, p.5142-5146.
〔126〕 C.C. Lee, W. William, 'High temperature silver-indium joints manufactured at low temperature.', Thin Solid Films, Vol. 366, 2000, p.196-201.
〔127〕 Ricky W. Chuang and Chin C. Lee, 'Silver-Indium Joints Produced at LowTemperature for High Temperature Devices.', IEEE Transactions on Components and Packaging Technologies, Vol. 25, 2002, p.453-458.
〔128〕 Y.X. Gan, F.W. Dynys, 'Joining highly conductive and oxidation resistant silver-based electrode materials to silicon for high temperature thermoelectric energy conversions.', Mterials Chemistry and Physics, Vol. 138, 2013, p.342-349.
〔129〕 S.A. Yamini, T. Ikeda and A. Lalonde, 'Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility.', Journal of Materials Chemistry A, Vol. 1, 2013, p.8725-8730.
〔130〕 M. Orihashi, Y. Noda and L.D. Chen, 'Effect of tin content on thermoelectric properties of p-type lead tin telluride.', Journal of Physics and Chemistry of Solids, Vol. 61, 2000, p.919-923.
〔131〕 C. N. Liao, C. H. Lee and W. J. Chen, 'Effect of Interfacial Compound Formation on Contact Resistivity of Soldered Junctions Between Bismuth Telluride-Based Thermoelements and Copper', Electrochemical and Solid-State Letters, Vol. 10, 2007, p.23-25.
〔132〕 Y. Hori and D. Kusano, 'Fabrication and evaluation of Bi-Te/Pb-Te cascade-type thermoelectric module. ', 22th International Conference on Thermoelectrics, 2003, p.602-605.
〔133〕 C. N. Liao, W.T. Chen and C.H. Lee, 'Polarity effect on interfacial reactions at soldered junctions of electrically stressed thermoelectric modules.', Applied Physics Letters, Vol. 97, 2010, p.241906-1 – 241906-3.
〔134〕 P. Y. Chien, C. H. Yeh and H. H. Hsu, 'Polarity Effect in a Sn3Ag0.5Cu/Bismuth Telluride Thermoelectric System.', Journal of Electronic Materials, Vol. 43, 2014, p.284-289.
〔135〕 李冠廷, Zn4Sb3中溫熱電材料與銅電極之薄膜固液擴散接合研究, 2013
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18401-
dc.description.abstract單一熱電元件能夠傳輸或轉換的電能非常有限,必須利用金屬電極將多組熱電元件連結成為熱電模組,才能夠提供足夠的熱電輸送功率,因此熱電材料的應用必須先解決熱電元件與Cu或Ni電極的接合問題。文獻上對於如何製備熱電材料以提升其熱電優值(Figure of merit)ZT進而增進熱電轉換效率已有大量的探討,對於熱電元件模組可靠度等性質之提升則少有著墨。一般熱電材料模組是利用金屬電極將n type及p type熱電材料依序串聯,上下兩側為陶瓷基板所製,在兩側之陶瓷基板製造溫差即可產生熱電效應。本研究著重於多層結構已預鍍Sn之Bi0.5Sb1.5Te3/Sn/Ni/SAC305-Cu 及未預鍍Sn之Bi0.5Sb1.5Te3/Ni/SAC305-Cu並以軟銲方式接合之比較。以及針對Bi0.5Sb1.5Te3/Sn/Ni/SAC30-Cu做時效處理(aging)的討論。研究結果顯示當我們在熱電材料先預鍍一層Sn並加熱使反應,其接合強度將明顯提升至接近母材(Bi0.5Sb1.5Te3)本身之強度,證明該預鍍Sn層可有效增強低溫熱電材料Bi0.5Sb1.5Te3與Ni層之間之接合強度。
實驗的另一部分將選用中溫熱電材料PbSnTe與Cu電極之SLID接合實驗,而由於中溫熱電元件將在高溫環境下操作,以傳統之軟、硬焊接合方法面臨許多挑戰。本研究遂於PbSnTe熱電材料上電鍍Ni後,採用Ag/Sn(or In)薄膜作為固液擴散接合技術之材料,並和Cu/Ag電極接合,利用其低溫接合,高溫應用的特性,接點之介金屬將在相對低溫即可產生,同時在高溫仍然可以保有其穩定性。實驗探討PbSnTe/Ni以及Ag/Sn(or In)薄膜與Cu/Ag電極之界面反應觀察,計算介金屬生長動力學,以及針對不同接合參數下之接點強度做量測。
實驗結果顯示,於PbSnTe熱電材料與Ni層間電鍍一層Sn 並加熱使與熱電材料反應,將能再提升PbSnTe及Ni層之界面接合強度。於250°C以上之溫度接合5分鐘以上,PbSnTe/Sn/Ni/Ag與Sn(or In)/Ag/Cu接合之界面即可把中間4μm之Sn層完全消耗完畢並形成Ag3Sn、Cu6Sn5及Cu3Sn三種介金屬,其中隨著接合溫度與時間上升,Ag3Sn及Cu3Sn將會有消長之勢,且Cu6Sn5將快速被Cu3Sn 取代。
在確定預鍍Sn製程之PbSnTe/Sn/Ni/-Sn(or In)/Ag/Cu樣品確實能提升其接合強度後,接下來將進一步驗證該預鍍Sn層對熱電元件的整體電性是否會有不良影響,實驗結果發現預鍍Sn製程之各系統樣品之各接合區界面接觸電阻率佔整體總電阻率的3%以內,顯示此預鍍Sn之SLID製程並不會令熱電模組的整體電性下降太多。
研究的最後部分則為探討擴散阻障層的選擇,因為當我們選用中溫熱電材料Zn4Sb3來製作熱電模組時,傳統上常作為擴散阻障層之Ni層在此已不適用,理由是Zn的活性過大,所以擴散阻障Ni層將會在使用過程中消耗過速。而後續在嘗試各種不同的擴散阻障層時,發現Ti會是極適合的選擇,並且在未來的應用上可直接以Ti同時作為擴散阻障層與電極,並直接以擴散耦合(diffusion couple)的方式接合之。
zh_TW
dc.description.abstractThe ability for single thermoelectric components to transfer or convert electric energy is very limited. In order to provide sufficient thermoelectric power, metallic electrodes are used to connect a series of thermoelectric components into a thermoelectric module. As a result, solving the joint issues between the Cu or Ni electrode with thermoelectric components is the first step to the application of thermoelectric materials. The process improvement for enhancing the figure of merit, ZT, in thermoelectric material production, which then increases the efficiency of thermoelectric conversion efficiency has been thoroughly discussed in the literature. However, the property enhancement of thermoelectric components and modules, such as reliability, is seldom discussed. In general, thermoelectric modules are connected in series through their metal electrodes in a sequence of n- and p-type thermoelectric materials. The top and bottom sides are made from ceramic substrates. The temperature difference from the ceramic substrate thereby can produce a thermoelectric effect. The focus in this research was to compare the bonding between two multilayer structures: Bi0.5Sb1.5Te3/Sn/Ni/SAC305-Cu and Bi0.5Sb1.5Te3/Ni/SAC305-Cu. In addition, the aging effect of Bi0.5Sb1.5Te3/Sn/Ni/SAC305-Cu was also discussed. Results also showed when the thermoelectric material was pre-coated with a Sn layer and then heated, the joint strength significantly increased to nearly the strength of the base material (Bi0.5Sb1.5Te3) itself. This demonstrated that the Sn layer can effectively increase the adhesion strength between the Bi0.5Sb1.5Te3 and Ni layer.
Theother part of the experiment will choose medium temperature thermoelectric PbSnTe which is bonded with Cu electrode, because high temperature environment is needed for thermoelectric components to work properly, the traditional soldering or brazing bond between components and electrodes is facing new challenges. In this research, we studied the property of PbSnTe plated with Ni and with a thin film of Ag/Sn(or In) as the solid-liquid interdiffusion bonding material. Also, with Cu/Ag electrode joint and its low temperature bonding and being applicable to high temperature, IMC can be produced in relatively low temperature and still being stable in high temperature. Experiments are done to check the interfaces between PbSnTe/Ni, Ag/Sn(or In) thin film, and Ag/Cu electrode. We calculated the growth dynamics of intermetallic compound and measured the strength of the joints for different experiment parameters.
The results show that electroplating Sn in between thermoelectric material PbSnTe and Ni layer, and then heating it to ensure that there are reactions between thermoelectric material and Sn, which will enhance the strength of the interface between PbSnTe and Ni layer. Heating with temperature over 2500C and over five minutes will ensure Sn layer with 4μm between PbSnTe/Sn/Ni/Ag and Sn(or In)/Ag/Cu is consumed completely. This will create the following three kinds of intermetallic compound, Ag3Sn, Cu6Sn5, and Cu3Sn. With rising temperature and more time, Ag3Sn and Cu3Sn will decline and grow mutually. Also, Cu6Sn5 will be quickly replaced by Cu3Sn.
After confirming that the bonding strength of PbSnTe/Sn/Ni/-Sn(or In)/Ag/Cu module can be increased by pre-coating Sn, the next step is to verify the pre-coated Sn layer does not cause negative effect on the electricity of the thermoelectric component. The results indicate the resistance of the reaction region with pre-coated Sn layer is only less than 3% of the overall electrical resistance in the sample. Hence, the pre-coated Sn layer does not affect the overall electrical performance.
The last part of the research is to discuss the choice of diffusion barrier layer in the Zn4Sb3 thermoelectric module. The traditional choice of Ni as diffusion barrier layer is not suitable for Zn4Sb3 because of the high Zn activity. Thus, the depletion rate of Ni as diffusion barrier layer is over-accelerated. After testing many different materials as diffusion barrier layer, Ti turns out to be a great option. Theoretically, Ti can be applied for both diffusion barrier and electrode via diffusion couple method.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:03:23Z (GMT). No. of bitstreams: 1
ntu-103-D97527017-1.pdf: 9274545 bytes, checksum: 7443d7e6b66910cb86f35f2651dd04d7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 II
摘要 i
Abstract ii
目錄 iv
壹. 前言 1
圖1- 1 將P型及N型半導體串聯後之熱電模組示意圖(a)截面示意圖(b)立體示意圖
圖1- 2固液擴散接合示意圖 3
貳. 理論及文獻回顧 4
2.1 熱電現象 4
2.1.1 Seebeck效應 4
2.1.2 Peltier效應 5
2.1.3 Thomson效應 5
2.2 ZT值 6
2.3 熱電模組 7
表2- 1各種不同熱電材料之特性[39] 11
2.4 常見之材料接合製成 12
2.4.1 軟銲(Soldering) 12
2.4.2 硬銲(Brazing) 13
2.4.3 固液擴散接合(Solid-Liquid Interdiffusion Bonding,SLID) 14
2.5 界面反應動力學 21
2.5.1 界面控制反應 22
2.5.2 擴散控制反應 23
2.6 文獻回顧 25
2.6.1 擴散阻障層 25
2.6.2 固液擴散接合之界面反應 29
2.6.3 Sn-Zn-Ni 界面反應 32
2.6.4 Ni-Zn界面反應 33
2.6.5 Cu-Sn界面反應 34
2.6.6 Ag-Sn界面反應 37
2.6.7 Ni-Sn界面反應 38
2.6.8 Sn-Te界面反應 40
2.6.9 Ag-In界面反應 41
2.6.10 中高溫型熱電材料的其他接合方式 42
2.6.11 電性量測 44
2.6.12 熱電模組電遷移 45
參. 實驗方法 85
3.1熱電材料接合製程 85
3.1.1 Bi0.5Sb1.5Te3 與 Cu 電極接合製程 85
3.1.2 PbSnTe 與 Cu 電極接合製程 87
3.1.3 PbTe/Sn/Ni-Sn/Ag/Cu 熱電模組之接觸電阻研究 88
3.1.4 擴散阻障層的選用 89
3.1.5 ZnSb/Ag、ZnSb/Cu、ZnSb/Ni、ZnSb/Ti 之diffusion couple 相關研究 89
3.1.6 Zn4Sb3 與 Ti 之diffusion couple研究 89
肆. 實驗結果與討論 105
4.1.1 Bi0.5Sb1.5Te3/Ni/SAC305-Cu 之界面反應 105
4.1.2 Bi0.5Sb1.5Te3/Ni/SAC305-Cu 系統之接合強度測試 106
4.2.1 Bi0.5Sb1.5Te3/Sn/Ni/SAC305-Cu之界面反應 106
4.2.2 Bi0.5Sb1.5Te3/Sn/Ni/SAC305-Cu 系統之接合強度測試 107
4.3.1 Bi0.5Sb1.5Te3/Sn /Ni/SAC305-Cu時效處理後之界面反應 107
4.3.2 Bi0.5Sb1.5Te3/Sn /Ni/SAC305-Cu時效處理後之強度測試 109
4.4.1 PbSnTe/Ni/Ag–Sn/Ag/Cu之界面反應及強度測試 109
4.4.2 PbSnTe/Sn/Ni/Ag–Sn/Ag/Cu之界面反應及強度測試 110
4.5.1 PbSnTe/Ni/Ag–In/Ag/Cu之界面反應及強度測試 113
4.5.2 PbSnTe/Sn/Ni/Ag–In/Ag/Cu之界面反應及強度測試 114
4.6 電阻量測 118
4.6.1預鍍Sn製程對熱電材料PbSnTe電性之影響 118
4.6.2 PbSnTe/Sn/Ni/Ag – Sn/Ag/Cu電性之影響 119
4.6.3 PbSnTe/Sn/Ni/Ag – In/Ag/Cu電性之影響 120
4.7 Zn4Sb3 之擴散阻障層選擇 121
4.7.1 Zn4Sb3/Mo/Ag-Sn/Ag/Cu之接合界面研究 121
4.7.2 Zn4Sb3/Ni/Mo/Ag-Sn/Ag/Cu之接合界面研究 121
4.7.3 Zn4Sb3/Co-p/Ag-Sn/Ag/Cu之接合界面研究 121
4.7.4 Zn4Sb3與Cu、Ag、Ni、Ti擴散接合界面分析 122
4.7.5PbSnTe與Ti擴散接合界面分析 124
伍. 結論 156
陸. 參考文獻 159
dc.language.isozh-TW
dc.title固液擴散接合製作熱電模組之界面反應及其電性之研究zh_TW
dc.titleInterfacial Reactions and Electrical Properties of Thermoelectric Modules Manufactured with Solid-Liquid Interdiffusion Bondingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee林招松(Chao - Sung Lin),吳子嘉(Albert T. Wu),黃振東,吳春森,張世穎
dc.subject.keyword熱電材料,固液擴散接合,接觸電阻,擴散耦合,擴散阻障層,zh_TW
dc.subject.keywordThermoelectric material,Solid liquid interdiffusion bonding,Contact resistance,Diffusion couple,Diffusion barrier layer,en
dc.relation.page173
dc.rights.note未授權
dc.date.accepted2014-09-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved