Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃偉邦(Wei-Pang Huang)
dc.contributor.authorYi-Hsin Wuen
dc.contributor.author吳怡欣zh_TW
dc.date.accessioned2021-06-08T01:03:13Z-
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-08
dc.identifier.citationArino, J., et al. (2010). Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74, 95-120.
Farré, J.C. and Subramani, S. (2016). Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 17, 537–552.
Feng, Y., et al. (2014). The machinery of macroautophagy. Cell Res 24, 24-41.
Funderburk, S. F., Wang, Q. J., and Yue, Z. (2010). The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends in cell biology 20, 355–362.
Gaber, R. F., et al. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and cellular biology 8, 2848-2859.
He, C., Baba, M., Cao, Y., and Klionsky, D. J. (2008). Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Molecular biology of the cell 19, 5506–5516.
Ichimura, Y., Kirisako, T., Takao, T. et al. (2000). An ubiquitin-like system mediates protein lipidation. Nature 408, 488–492.
Jiang, P., and Mizushima, N. (2014). Autophagy and human diseases. Cell research 24, 69–79.
Juris, L., Montino, M., Rube, P., Schlotterhose, P., Thumm, M., Krick, R. (2015). PI3P binding by Atg21 organises Atg8 lipidation. The EMBO journal 34, 955–973.
Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., and Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Molecular biology of the cell 16, 2544–2553.
Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K., and Ohsumi, Y. (2010). Tor directly controls the Atg1 kinase complex to regulate autophagy. Molecular and cellular biology 30, 1049–1058.
Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of cell biology 152, 519–530.
Ko, C. H., et al. (1990). TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125, 305-312.

Ko, C. H. and Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and cellular biology 11, 4266-4273.
Ko, C. H., Liang, H., and Gaber, R. F. (1993). Roles of multiple glucose transporters in Saccharomyces cerevisiae. Molecular and cellular biology 13, 638–648.
Kotani, T., Kirisako, H., Koizumi, M., Ohsumi, Y., and Nakatogawa, H. (2018). The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America 115, 10363–10368.

Kraft, C. and Martens, S. (2012). Mechanisms and regulation of autophagosome formation. Curr Opin Cell Biol 24, 496-501.
Kuma, A., Mizushima, N., Ishihara, N., and Ohsumi, Y. (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. The Journal of biological chemistry 277, 18619–18625.
Lapathitis, G. and Kotyk, A. (1998). Univalent cation fluxes in yeast. IUBMB Life 44, 371-380.
Lynch-Day, M. A., and Klionsky, D. J. (2010). The Cvt pathway as a model for selective autophagy. FEBS letters 584, 1359–1366.
Madrid, J., Hernández, F., Pulgar, M. A., and Cid, J. M. (1998). Effects of citrus by-product supplementation on the intake and digestibility of urea sodium hydroxide-treated barley straw in goats. Small Rumin. Res 28, 241-248.
Marat, A. L., and Haucke, V. (2016). Phosphatidylinositol 3-phosphates-at the interface between cell signaling and membrane traffic. The EMBO journal 35, 561–579.
Mari, M., Griffith, J., Rieter, E., Krishnappa, L., Klionsky, D. J., and Reggiori, F. (2010). An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. The Journal of cell biology 190, 1005–1022.
Memisoglu, G., Eapen, V. V., Yang, Y., Klionsky, D. J., and Haber, J. E. (2019). PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex. Proceedings of the National Academy of Sciences of the United States of America 116, 1613–1620.
Memisoglu, G., and Haber, J. E. (2019). Dephosphorylation of the Atg1 kinase complex by type 2C protein phosphatases. Molecular cellular oncology 6, 1588658.
Michel, B., et al. (2006). The yeast potassium transporter TRK2 is able to substitute for TRK1 in its biological function under low K and low pH conditions. Yeast 23, 581-589.

Mulet, J. M., et al. (1999). A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Molecular and cellular biology 19, 3328-3337.
Nair, U., Cao, Y., Xie, Z., and Klionsky, D. J. (2010). Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. The Journal of biological chemistry 285, 11476–11488.
Nakatogawa, H. (2020). Mechanisms governing autophagosome biogenesis. Nature Reviews Molecular Cell Biology 21, 439-458.
Nakatogawa, H., et al. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467.
Navarre, C., and Goffeau, A. (2000). Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. The EMBO journal 19, 2515–2524.
Noda, T. and Klionsky, D. J. (2008). The quantitative Pho8Δ60 assay of nonspecific autophagy. Methods in enzymology 451, 33-42.
Noda, T., Kim, J., Huang, W.-P., Baba, M., Tokunaga, C., et al. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol 148, 465–480.
Ohsumi, Y. (2014). Historical landmarks of autophagy research. Cell Res 24, 9-23.
Pérez-Valle, J., et al. (2007). Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Molecular and cellular biology 27, 5725-5736.

Pérez-Valle, J., et al. (2010). Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism. Eukaryotic cell 9, 1881-1890.

Ramos, J., et al. (1994). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. Journal of bacteriology 176, 249-252.
Reggiori, F. and Klionsky, D. J. (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194, 341-361.

Rodríguez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta, Reviews on Biomembranes 1469, 1-30.

Rodriguez-Navarro, A. and Ramos, J. (1984). Dual system for potassium transport in Saccharomyces cerevisiae. Journal of bacteriology 159, 940-945.
Shibutani, S. T. and Yoshimori, T. (2014). A current perspective of autophagosome biogenesis. Cell Res 24, 58-68.

Shintani, T. and Klionsky, D. J. (2004). Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. Journal of Biological Chemistry 279, 29889-29894.
Stefan, C. P., Zhang, N., Sokabe, T., Rivetta, A., Slayman, C. L., Montell, C., Cunningham, K. W. (2013). Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryotic cell 12, 204–214.
Takeshige, K., et al. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. The Journal of cell biology 119, 301-311.
Tsukada, M. and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS letters 333, 169-174.
Vargas, R. C., García-Salcedo, R., Tenreiro, S., Teixeira, M. C., Fernandes, A. R., Ramos, J., and Sá-Correia, I. (2007). Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. Eukaryotic cell 6, 134–142.
Wen, X. and Klionsky, D. J. (2016). An overview of macroautophagy in yeast. Journal of molecular biology 428, 1681-1699.
Wright, M. B., Ramos, J., Gomez, M. J., Moulder, K., Scherrer, M., Munson, G., and Gaber, R. F. (1997). Potassium transport by amino acid permeases in Saccharomyces cerevisiae. The Journal of biological chemistry 272, 13647–13652.
Yamamoto, H., Fujioka, Y., Suzuki, S. W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., Noda, N. N., and Ohsumi, Y. (2016). The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes. Developmental cell 38, 86–99.
Yamamoto, H., Kakuta, S., Watanabe, T. M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., and Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. The Journal of cell biology 198, 219–233.
Yang, Z. and Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nature cell biology 12, 814-822.
Yeh, Y. Y., Shah, K. H., Chou, C. C., Hsiao, H. H., Wrasman, K. M., Stephan, J. S., Stamatakos, D., Khoo, K. H., and Herman, P. K. (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy 7, 716–726.
Zhao, Y. G. and Zhang, H. (2019). Core autophagy genes and human diseases. Current opinion in cell biology 61, 117-125.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18398-
dc.description.abstract細胞自噬是一個蛋白質分解機制,藉由雙層膜構造-自噬小體吞噬細胞質內不必要之物質,包含蛋白質或損壞的胞器,進而與液泡或溶酶體結合後水解。這個高度保守的機制有維持細胞內滲透壓恆定的重要功能,細胞自噬一旦失調即會導致許多人類疾病的產生,例如神經退化性疾病和癌症。當細胞受到外界環境刺激或接受到養分或氧氣不足時,就會啟動細胞自噬。此過程可分為四個階段,細胞自噬啟動、分隔膜形成、自噬小泡成熟和溶酶體分解。每一個階段都有許多特定蛋白調控,且許多磷酸酶也參與其中。前人研究發現Hal4和Hal5在維持細胞膜上運輸蛋白的穩定性扮演重要角色。這兩個功能相似的磷酸酶藉由調控鉀離子運輸蛋白Trk1-Trk2和穩定細胞膜上Trk1,促進鉀的攝取而調控鹽類耐受性。此外,我們先前研究證實剔除hal4和hal5基因的酵母菌會使細胞自噬活性下降且降低細胞生長速率。藉由補充鉀離子或是過度表現蛋白,可以恢復細胞生長速率,但只能有限地修復細胞自噬活性。本研究致力於研究是否Trk1和Trk2運輸蛋白也參與細胞自噬的調控。然而,根據我的實驗結果,發現剔除Trk1和Trk2 基因的酵母菌所產生的細胞自噬活性下降和生長速率遲緩,皆可藉由補充鉀離子全然恢復,證實Trk1和Trk2與細胞自噬的調控沒有直接關係。zh_TW
dc.description.abstractAutophagy is a protein degradation pathway by engulfing cytoplasmic components, including protein aggregates and damaged organelles, into autophagosomes that later fuse with the vacuole in yeast or the equivalent organelle lysosome in metazoans. It is a highly conserved process occurring from yeast to mammals and is critical to maintaining cell homeostasis. Deregulated autophagy is involved in various human diseases, such as neurodegenerative diseases, cancers, and metabolic diseases. When cells suffer stress such as starvation or heat, autophagy will be induced. This process can be divided into four stages: initiation, autophagosome formation, autophagosome maturation, and lysosome degradation. Each stage is regulated by specific proteins and several kinases are also involved. Hal4 and Hal5 are two functionally redundant Ser/Thr protein kinases involved in salt tolerance. Previous studies had shown the important role of Hal4 and Hal5 protein kinases to maintain the stability of plasma membrane transporter protein Trk1 and Trk2. Hal4 and Hal5 promote K+ uptake by the potassium transporter Trk1-Trk2 and stabilize Trk1 in the plasma membrane. A previous study from our laboratory had found that knockout of HAL4 and HAL5 genes in budding yeast caused severe autophagy defects and slower growth phenotype. Supplementation of potassium and overexpression of Npr1 can rescue the growth defect but not autophagy defect in the double knockout mutant cells. In this study, I aim to investigate whether Trk1 and Trk2 are also involved in autophagy regulation. My experimental results show that the autophagy and growth defect in the double knockout trk1trk2 mutant can be rescued by potassium supplementation completely, which demonstrates the potassium transporter protein Trk1 and Trk2 are not directly involved in autophagy regulation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:03:13Z (GMT). No. of bitstreams: 1
U0001-0502202115500500.pdf: 2614616 bytes, checksum: 0b294dbdda70c7518a06dad4182b9611 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝………………………………………………………………………………………………………………………...i
中文摘要………………………………………………………………………………………………………………..ii
ABSTRACT………………………………………………………………………………………………………….iii
1. INTRODUCTION............1
Overview of macroautophagy ……………………………………………………..1
Autophagy mechanism in yeast ……………………………………………………2
Potassium homeostasis in yeast…………………………………………………….5
2. MATERIALS AND METHOD……………………………………………….......7
2.1 Strains and media……………………………………………………………...7
2.2 Fluorescence microscopy……………………………………………………..8
2.3 Preparation of whole yeast cell extracts for immunoblotting analysis………..8
2.4 Pho8Δ60 assay………………………………………………………………...9
2.5 Growth curve………………………………………………………………...10
2.6 Survival curve…………………...…………………………………………...10
2.7 Making the Kinase dead mutant strains……………………………………...11
3. RESULTS………………………………………………………………………...12
3.1 General autophagy is severely inhibited in Trk1 and Trk2 depleted cells…..12
3.2 Potassium supplementation can completely rescue the autophagy defect and growth defect in trk1∆trk2∆ cells…………………………………………………13
3.3 The hal4Δhal5Δ strain showed serious autophagy defect and had a slower growth phenotype…………………….…………………………………………...15
3.4 Potassium supplementation can not rescue the autophagy defect and growth defect in hal4Δhal5Δ cells………………………………………………………...16
3.5 The hal4Δhal5Δ strain showed lower enzyme activity in the Pho8Δ60 assay……………………………………………………………………………....16
3.6 The hal4Δhal5Δ strain showed vacuolar fragmentation…………………….17
4. DISCUSSION…………………………………………………………………….19
5. REFERENCES………………………………………………………………......26
6. TABLES AND FIGURES……………………………………………………….36
Table 1. Yeast strains used in this study………………………………………...36
Table.2 Primers used for plasmids construction……………………..................38
Table.3 Plasmids used in this study…………………………………………….39
Figure 1…………………………………………………………………………...40
Figure 2…………………………………………………………………………...42
Figure 3…………………………………………………………………………...44.
Figure 4…………………………………………………………………………...46
Figure 5…………………………………………………………………………...47
Figure 6…………………………………………………………………………...49
Figure 7…………………………………………………………………………...52
Figure 8…………………………………………………………………………...54
Supplement figure 1….…………………………………………………………...55
dc.language.isoen
dc.title"Trk1,Trk2,Hal4及Hal5調控細胞自噬之角色"zh_TW
dc.titleStudy of the roles of Trk1, Trk2, Hal4, and Hal5 in autophagy regulationen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee潘建源 (Chien-Yuan Pan),朱家瑩 (Chia-Ying Chu)
dc.subject.keyword細胞自噬,Trk1蛋白,Trk2蛋白,Hal4蛋白,Hal5蛋白,鉀離子運輸,磷酸酶,zh_TW
dc.subject.keywordautophagy,Hal4,Hal5,protein kinase,potassium transporter,Trk1,Trk2,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202100598
dc.rights.note未授權
dc.date.accepted2021-02-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
U0001-0502202115500500.pdf
  未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved