請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18392
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光 | |
dc.contributor.author | Po-Han Lin | en |
dc.contributor.author | 林柏翰 | zh_TW |
dc.date.accessioned | 2021-06-08T01:02:54Z | - |
dc.date.copyright | 2014-09-16 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-09-15 | |
dc.identifier.citation | 1. Srinivasan, V., V.K. Pamula, and R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip, 2004. 4(4): p. 310-315.
2. Chin, C.D., V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip, 2007. 7(1): p. 41-57. 3. Burns, M.A., et al., An integrated nanoliter DNA analysis device. Science, 1998. 282(5388): p. 484-487. 4. Rivet, C., et al., Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science, 2011. 66(7): p. 1490-1507. 5. Dittrich, P.S. and A. Manz, Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery, 2006. 5(3): p. 210-218. 6. Dittrich, P.S., K. Tachikawa, and A. Manz, Micro total analysis systems. Latest advancements and trends. Analytical chemistry, 2006. 78(12): p. 3887-3908. 7. Unger, M.A., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113-116. 8. Teh, S.-Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220. 9. Fair, R.B., Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 2007. 3(3): p. 245-281. 10. Barbulovic-Nad, I., et al., Digital microfluidics for cell-based assays. Lab on a Chip, 2008. 8(4): p. 519-526. 11. Berthier, J., Micro-drops and digital microfluidics. 2012: William Andrew. 12. Men, Y., et al., Digital polymerase chain reaction in an array of femtoliter polydimethylsiloxane microreactors. Analytical chemistry, 2012. 84(10): p. 4262-4266. 13. Wang, Z. and J. Zhe, Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab on a Chip, 2011. 11(7): p. 1280-1285. 14. Hung, L.-H., et al., Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip, 2006. 6(2): p. 174-178. 15. Taflin, D.C., T.L. Ward, and E.J. Davis, Electrified droplet fission and the Rayleigh limit. Langmuir, 1989. 5(2): p. 376-384. 16. Burr, R.C., et al., Monitoring and control of droplet sorting. 2005, Google Patents. 17. Chiou, P.-Y., Z. Chang, and M.C. Wu, Droplet manipulation with light on optoelectrowetting device. Microelectromechanical Systems, Journal of, 2008. 17(1): p. 133-138. 18. Walker, S.W. and B. Shapiro, Modeling the fluid dynamics of electrowetting on dielectric (EWOD). Microelectromechanical Systems, Journal of, 2006. 15(4): p. 986-1000. 19. Lippmann, M., On the principle of the conservation of electricity. 1881. 20. Ohta, A.T., et al., Dynamic cell and microparticle control via optoelectronic tweezers. Microelectromechanical Systems, Journal of, 2007. 16(3): p. 491-499. 21. Shen, F., et al., Digital PCR on a SlipChip. Lab on a Chip, 2010. 10(20): p. 2666-2672. 22. 許溢适, 壓電/電歪致動器. 1996, 文笙書局. 23. 吳朗, 電子陶瓷: 壓電陶瓷. 1994: 全欣. 24. Van Lintel, H., F. Van de Pol, and S. Bouwstra, A piezoelectric micropump based on micromachining of silicon. Sensors and actuators, 1988. 15(2): p. 153-167. 25. Linnemann, R., et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases. in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on. 1998. IEEE. 26. Chang, W.-C., et al., Photoconductive Piezoelectric Polymer Made From a Composite of P (VDF-TrFE) and TiOPc. Ferroelectrics, 2013. 446(1): p. 9-17. 27. Jung, J., et al., Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections. Journal of Micromechanics and Microengineering, 2013. 23(12): p. 125037. 28. Lin, P., Y. Hsu, and C. Lee. Universal lab on a smartphone: a research of TiOPc thin film as a light dependence electrode. in SPIE BiOS. 2014. International Society for Optics and Photonics. 29. Sensor, M.S., Technical Manual. 2008. 30. Lee, C., Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 1990. 87(3): p. 1144-1158. 31. Lee, C.-K. and F.C. Moon, Modal sensors/actuators. Journal of applied mechanics, 1990. 57(2): p. 434-441. 32. Darhuber, A.A. and S.M. Troian, Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech., 2005. 37: p. 425-455. 33. Pei, S.N., et al. Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on. 2010. IEEE. 34. Cho, S.K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Microelectromechanical Systems, Journal of, 2003. 12(1): p. 70-80. 35. Arora, A., et al., Latest developments in micro total analysis systems. Analytical chemistry, 2010. 82(12): p. 4830-4847. 36. Paeschke, M., et al., Properties of interdigital electrode arrays with different geometries. Analytica Chimica Acta, 1995. 305(1): p. 126-136. 37. Curie, J. and P. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, 1880. 3: p. 90. 38. Tichy, J., et al., Principles of Piezoelectricity, in Fundamentals of Piezoelectric Sensorics. 2010, Springer. p. 1-14. 39. 林致廷, 全新點式壓電感應子之設計架構: 分佈式壓電感應子與點式壓電感應子之互動. 1998, National Taiwan University Institute of Applied Mechanics. 40. Cady, W.G., Piezoelectricity. 1946. 41. Ikeda, T. and T. Ikeda, Fundamentals of piezoelectricity. Vol. 2. 1990: Oxford university press Oxford. 42. Kawai, H., The piezoelectricity of poly (vinylidene fluoride). Japanese Journal of Applied Physics, 1969. 8(7): p. 975. 43. Dusek, K., Advances in polymer science. Responsive gels: volume transitions II, vol, 1993. 110. 44. Ueberschlag, P., PVDF piezoelectric polymer. Sensor Review, 2001. 21(2): p. 118-126. 45. 黃, 旭., 以TiOPc/壓電圓板設計可撓鏡的研發 =:Design and construction of deformable mirror using a spatially modulated TiOPc/piezo actuator. 1921. 46. Schmidt, V.H., et al. Actuators Based on PVDF Sheets with Flexible. in Proceedings. 2005. Publishing Services, IEEE. 47. Giurgiutiu, V., Structural health monitoring: with piezoelectric wafer active sensors. 2007: Academic Press. 48. Lee, C.-K., Piezoelectric laminates for torsional and bending modal control: theory and experiment. 1987: Cornell University, May. 49. Lee, C.K., W.W. Chiang, and T. O’Sullivan, Piezoelectric modal sensor/actuator pairs for critical active damping vibration control. The Journal of the Acoustical Society of America, 1991. 90(1): p. 374-384. 50. Crawley, E.F. and J. De Luis, Use of piezoelectric actuators as elements of intelligent structures. AIAA journal, 1987. 25(10): p. 1373-1385. 51. Kadish, K.M., K.M. Smith, and R. Guilard, The porphyrin handbook. 1999: Elsevier. 52. Law, K.Y., Organic photoconductive materials: recent trends and developments. Chemical Reviews, 1993. 93(1): p. 449-486. 53. Yanagi, H., et al., Dye-sensitizing effect of TiOPc thin film on n-TiO2 (001) surface. The Journal of Physical Chemistry, 1996. 100(13): p. 5447-5451. 54. Bartholomeusz, D.A., R.W. Boutte, and J.D. Andrade, Xurography: rapid prototyping of microstructures using a cutting plotter. Microelectromechanical Systems, Journal of, 2005. 14(6): p. 1364-1374. 55. Mizrahi, B., et al., Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives. Acta biomaterialia, 2011. 7(8): p. 3150-3157. 56. Gent, A.N., Engineering with rubber: how to design rubber components. 2012: Carl Hanser Verlag GmbH Co KG. 57. Rice, J.A. and A.C. Rice, Young's Modulus and Thermal Expansion of Filled Cyanate Ester and Epoxy Resins. Applied Superconductivity, IEEE Transactions on, 2009. 19(3): p. 2371-2374. 58. Chilibon, I., et al., PZT and PVDF bimorph actuators. Journal of optoelectronics and advanced materials, 2007. 9(6): p. 1939-1943. 59. Setter, N. and E. Colla, Ferroelectric ceramics: Tutorial reviews, theory, processing, and applications. 1993: Birkhauser. 60. Laermer, F. and A. Schilp, Method of anisotropically etching silicon. 1996, Google Patents. 61. Monroe, M.G., E.L. Nikkel, and D.M. Lazaroff, Method of forming MEMS device. 2005, Google Patents. 62. Quirk, M. and J. Serda, Semiconductor manufacturing technology. Vol. 1. 2001: Prentice Hall Upper Saddle River, NJ. 63. 張志誠, 微機電技術. Vol. 32. 2002: 城邦出版集團. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18392 | - |
dc.description.abstract | 微流體技術與晶片實驗室這個概念開啟了在生物醫學檢測、分析化學等領域一個新的方向。微流體技術是將生物化學之樣本或是檢體縮小至微米甚至是奈米的尺度來檢視,這樣的微縮化,帶來了更簡易的設備,節省檢體,加速檢測時間,更便利於反應結果判讀等新的益處。而數位微流體是微流體系統之一個分支,其主要概念便是將原本連續性的微流體非連續化,單獨將非連續的流體單元視為獨立可操作與反應的微液珠單元。因此,如何開發在微觀的世界中操縱控制微液珠的各種不同方法就成為頂尖研究團隊關心的課題。本論文主要是在以高分子壓電材料為基礎,開發一種全新的數位微液珠推動方式以及數位微流體晶片的製程,開發出薄膜式壓電致動器陣列,此方法利用9um極薄的高分子壓電薄膜PVDF製成的微懸臂樑陣列來提供推動液珠的動力,利用共振模態以及空間位置改片而造成的表面張力改變現象趨動液珠。發展一低成本薄膜製程,應用商業化薄膜切割機,在最高的機器解析度10μm的精度下,快速的完成原型製造,並且在此數位微流體晶片的製程上實現了不需要昂貴費時的無塵室微機電製程的另一種製造方式,實現了低成本,快速簡易的製程。探討了各項壓電懸臂樑形式與微液珠的關係,實現了一種全新的微液珠推動方式。 | zh_TW |
dc.description.abstract | The concept of Microfluidics and Lab on a Chip create a new tool to solve biological, chemical and physical problems in micro-scale domain. Moreover, digital microfluidics have introduce a more delicate concept for simplify the analytical platform and experimental equipment, saving samples and shorten the testing time. Hence, how to manipulate micro-droplets for this digital microfluidics application is an important task for researchers in this advancing field. In this thesis, a new platform of digital micro-droplets chip was developed. Using a PVDF piezoelectric polymer with very thin thickness in 9μm to create an 8x8 bimorph cantilever beam array for the driving force of micro-droplets. A fast prototyping fabrication process for thin-film micro-fabrication process was also developed. This method is a low cost process with minimal clean room fabrication processes and traditional semiconductor materials. The performance of micro-cantilevers was studied and the feasibility of thin-film piezoelectric polymer array were also verified. It was demonstrated that a 0.2μL and 0.5μL micro-droplets could be displaced for 273 μm and 54 μm, respectively in this thesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:02:54Z (GMT). No. of bitstreams: 1 ntu-103-R01525026-1.pdf: 3543321 bytes, checksum: 8a2e73a773d27c961bd16083ca355436 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 6 1.3 論文架構 7 第二章 新式數位微流體推動平台之 設計理念與架構 8 2.1 目的與理念 8 2.2 壓電製動器材料之選擇 9 2.3 智慧型結構設計 11 2.4 液珠推動驅動力 13 2.5 裝置尺寸設計與規劃 15 2.6 控制電路 16 2.7 設計機構 19 第三章 壓電介紹 23 3.1 壓電簡介 23 3.2 壓電材料特性 23 3.3 壓電材料 24 3.4 壓電高分子聚合物 25 3.5 壓電感應子及壓電致動器之間的互補定理 29 第四章 壓電方程式與壓電致動器 30 4.1 壓電本構方程式 30 4.2 壓電薄板理論 36 4.3 壓電致動器 41 第五章 光電導材料 47 5.1 TiOPc感光導電特性 47 5.2 TiOPc薄膜電學組抗實驗準備與實驗步驟 48 5.3 TiOPc薄膜電學組抗量測結果 50 5.4 TiOPc薄膜電學組抗量測結論 52 第六章 高分子壓電薄膜陣列之製程開發 53 6.1 壓電薄膜成型技術 53 6.2 壓電薄膜陣列表面電極之製程 58 6.3 壓電薄膜陣列網架之設計與製造 60 6.4 雙壓電晶片(Bimorph)結構之接合技術 63 6.5 製程開發結論 67 第七章 高分子壓電薄膜陣列操控平台 製程與整合量測結果 69 7.1 理論公式 69 7.2 平台製造過程 69 7.3 量測方法與實驗設置 76 7.4 綜合實驗結果與討論 78 7.5 實驗綜合結論 90 第八章 結論與未來展望 92 8.1 結論 92 8.2 未來展望 92 附錄 94 參考資料 98 | |
dc.language.iso | zh-TW | |
dc.title | 以高分子壓電薄膜陣列操控微液珠之數位微流體晶片之研發 | zh_TW |
dc.title | Research and Development of Digital Microfluidic Chip - Thin-film piezoelectric polymer array for micro-droplet manipulations | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 許聿翔 | |
dc.contributor.oralexamcommittee | 吳文中,江宏仁,黃念祖 | |
dc.subject.keyword | 實驗室晶片,數位微流體技術,壓電高分子薄膜,雙晶片壓電致動器,微液珠, | zh_TW |
dc.subject.keyword | Digital microfluidics,Lab on a Chip,piezoelectric material,bimorph cantilever beam, | en |
dc.relation.page | 101 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-09-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。