請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18390完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡振國 | |
| dc.contributor.author | Tzu-Yu Chen | en |
| dc.contributor.author | 陳姿妤 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:02:48Z | - |
| dc.date.copyright | 2015-02-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-09-23 | |
| dc.identifier.citation | References
[1] Y. Nakajima, T. Toda, T. Hanajiri, T. Toyabe, and T. Sugano, “In-depth profiling of electron trap states in silicon-on-insulator layers and local mechanical stress near the silicon-on-insulator/buried oxide interface in separation-by-implanted-oxygen wafers,” Journal of Applied Physics, vol. 108, pp. 124505-124505-5, 2010. [2] K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata, and S. Takagi, “Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm,” in Electron Devices Meeting, 2002. IEDM '02. International, 2002, pp. 47-50. [3] J. Koga, S. Takagi, and A. Toriumi, “Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs,” Electron Devices, IEEE Transactions on, vol. 49, pp. 1042-1048, 2002. [4] J.-C. Tseng and J.-G. Hwu, “Lateral Nonuniformity Effects of Border Traps on the Characteristics of Metal–Oxide–Semiconductor Field-Effect Transistors Subjected to High-Field Stresses,” Electron Devices, IEEE Transactions on, vol. 55, pp. 1366-1372, 2008. [5] W. K. Chim and P. S. Lim, “Hole injection with limited charge relaxation, lateral nonuniform hole trapping, and transient stress-induced leakage current in impulse-stressed thin (< 5 nm) nitrided oxides,” Journal of Applied Physics, vol. 91, pp. 1304-1313, 2002. [6] H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, et al., “Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFETs: uniformity, reliability, and dopant penetration of the gate oxide,” Electron Devices, IEEE Transactions on, vol. 45, pp. 691-700, 1998. [7] C. Chen and T. P. Ma, “Direct lateral profiling of hot-carrier-induced oxide charge and interface traps in thin gate MOSFET's,” Electron Devices, IEEE Transactions on, vol. 45, pp. 512-520, 1998. [8] J. F. Zhang, C. Z. Zhao, M. B. Zahid, G. Groeseneken, R. Degraeve, and S. De Gendt, “An Assessment of the Location of As-Grown Electron Traps in HfO2/HfSiO Stacks,” Electron Device Letters, IEEE, vol. 27, pp. 817-820, 2006. [9] T. P. Ma, H. M. Bu, X. W. Wang, L. Y. Song, W. He, W. Miaomiao, et al., “Special reliability features for Hf-based high-κ gate dielectrics,” Device and Materials Reliability, IEEE Transactions on, vol. 5, pp. 36-44, 2005. [10] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Reviews of Modern Physics, vol. 54, pp. 437-672, 1982. [11] E. Arnold, “Disorder‐induced carrier localization in silicon surface inversion layers,” Applied Physics Letters, vol. 25, pp. 705-707, 1974. [12] A. A. Guzev, G. L. Kurishev, and S. P. Sinitsa, “Scattering mechanisms in inversion channels of MIS structures on silicon,” physica status solidi (a), vol. 14, pp. 41-50, 1972. [13] Y. Naitou, H. Ogiso, S. Kamohara, F. Yano, and A. Nishida, “Scanning capacitance microscopy study of carrier depletion within grains of n-type polycrystalline silicon,” Surface and Interface Analysis, vol. 40, pp. 1117-1121, 2008. [14] Y. Naitou, A. Ando, H. Ogiso, S. Kamiyama, Y. Nara, K. Yasutake, et al., “Investigation of local charged defects within high-temperature annealed HfSiON/SiO2 gate stacks by scanning capacitance spectroscopy,” Journal of Applied Physics, vol. 101, pp. 083704-083704-6, 2007. [15] T.-Y. Chen, H.-W. Lu, and J.-G. Hwu, 'Effect of H2O on the electrical characteristics of ultra-thin SiO2 prepared with and without vacuum treatments after anodization,” Microelectronic Engineering, vol. 104, pp. 5-10, 2013. [16] J.-Y. Cheng, C.-T. Huang, and J.-G. Hwu, “Comprehensive study on the deep depletion capacitance-voltage behavior for metal-oxide-semiconductor capacitor with ultrathin oxides,” Journal of Applied Physics, vol. 106, pp. 074507-074507-7, 2009. [17] C.-C. Lin and J.-G. Hwu, “Investigation of nonuniformity phenomenon in nanoscale SiO2 and high-k gate dielectrics,” Journal of Applied Physics, vol. 112, pp. 064119-064119-5, 2012. [18] M. I. Vexler, A. F. Shulekin, C. Dieker, V. Zaporojtschenko, H. Zimmermann, W. Jager, et al., “Current model considering oxide thickness non-uniformity in a MOS tunnel structure,” Solid-State Electronics, vol. 45, pp. 19-25, 2001. [19] Y.-L. Wu, S.-T. Lin, T.-M. Chang, and J. J. Liou, “Nanoscale Bias-Annealing Effect in Postirradiated Thin Silicon Dioxide Films Observed by Conductive Atomic Force Microscopy,” Device and Materials Reliability, IEEE Transactions on, vol. 7, pp. 351-355, 2007. [20] I. Jogi, K. Kukli, M. Kemell, M. Ritala, and M. Leskela, “Electrical characterization of AlxTiyOz mixtures and Al2O3–TiO2–Al2O3 nanolaminates,” Journal of Applied Physics, vol. 102, pp. 114114-114114-11, 2007. [21] M. Cho, J. H. Kim, C. Seong Hwang, H.-S. Ahn, S. Han, and J. Y. Won, “Effects of carbon residue in atomic layer deposited HfO2 films on their time-dependent dielectric breakdown reliability,” Applied Physics Letters, vol. 90, pp. 182907-182907-3, 2007. [22] D. Spassov, E. Atanassova, and D. Virovska, “Electrical characteristics of Ta2O5 based capacitors with different gate electrodes,” Applied Physics A, vol. 82, pp. 55-62, 2006. [23] K. F. Schuegraf and H. Chenming, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation,” Electron Devices, IEEE Transactions on, vol. 41, pp. 761-767, 1994. [24] P. P. Apte and K. C. Saraswat, “Correlation of trap generation to charge-to-breakdown (Qbd): a physical-damage model of dielectric breakdown,” Electron Devices, IEEE Transactions on, vol. 41, pp. 1595-1602, 1994. [25] Z. Xiao, L. Jing, M. Grubbs, M. Deal, B. Magyari-Kope, B. M. Clemens, et al., “Physical model of the impact of metal grain work function variability on emerging dual metal gate MOSFETs and its implication for SRAM reliability,” in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4. [26] Z. Xiao, J. Mitard, L. A. Ragnarsson, T. Hoffmann, M. Deal, M. E. Grubbs, et al., “Theory and Experiments of the Impact of Work-Function Variability on Threshold Voltage Variability in MOS Devices,” Electron Devices, IEEE Transactions on, vol. 59, pp. 3124-3126, 2012. [27] H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors-Part I: Modeling, Analysis, and Experimental Validation,” Electron Devices, IEEE Transactions on, vol. 57, pp. 2504-2514, 2010. [28] P.-H. Tseng and J.-G. Hwu, “Corner induced non-uniform electric field effect on the electrical reliability of metal–oxide–semiconductor devices with non-planar substrates,” Solid-State Electronics, vol. 91, pp. 100-105, 2014. [29] T.-Y. Chen and J.-G. Hwu, “Effect of trapped electrons in ultrathin SiO2 on the two-state inversion capacitance at varied frequencies of metal-oxide-semiconductor capacitor,” Applied Physics A, pp. 1-7, 2014. [30] T.-Y. Chen, C.-S. Pang, and J.-G. Hwu, “Effect of Electrons Trapping/De-Trapping at Si-SiO2 Interface on Two-State Current in MOS(p) Structure with Ultra-Thin SiO2 by Anodization,” ECS Journal of Solid State Science and Technology, vol. 2, pp. Q159-Q164, 2013. [31] C.-Y. Yang and J.-G. Hwu, “Photo-Sensitivity Enhancement of HfO2-Based MOS Photodiode With Specific Perimeter Dependency Due to Edge Fringing Field Effect,” Sensors Journal, IEEE, vol. 12, pp. 2313-2319, 2012. [32] J.-Y. Cheng and J.-G. Hwu, “Characterization of Edge Fringing Effect on the C–V Responses From Depletion to Deep Depletion of MOS(p) Capacitors With Ultrathin Oxide and High-κ Dielectric,” Electron Devices, IEEE Transactions on, vol. 59, pp. 565-572, 2012. [33] T.-Y. Chen and J.-G. Hwu, “Two states phenomenon in the current behavior of metal-oxide-semiconductor capacitor structure with ultra-thin SiO2,” Applied Physics Letters, vol. 101, pp. 073506-073506-4, 2012. [34] K.-M. Chen and J.-G. Hwu, “Area dependent deep depletion behavior in the capacitance-voltage characteristics of metal-oxide-semiconductor structures with ultra-thin oxides,” Journal of Applied Physics, vol. 110, pp. 114104-114104-4, 2011. [35] J.-Y. Cheng, H.-T. Lu, and J.-G. Hwu, “Metal-oxide-semiconductor tunneling photodiodes with enhanced deep depletion at edge by high-k material,” Applied Physics Letters, vol. 96, pp. 233506-233506-3, 2010. [36] Y. K. Lin and J. G. Hwu, “Photosensing by Edge Schottky Barrier Height Modulation Induced by Lateral Diffusion Current in MOS(p) Photodiode,” Electron Devices, IEEE Transactions on, vol. PP, pp. 1-1, 2014. [37] P. F. Schmidt and W. Michel, “Anodic Formation of Oxide Films on Silicon,” Journal of The Electrochemical Society, vol. 104, pp. 230-236, 1957. [38] C.-C. Ting, Y.-H. Shih, and J.-G. Hwu, “Ultralow leakage characteristics of ultrathin gate oxides (~3 nm) prepared by anodization followed by high-temperature annealing,” Electron Devices, IEEE Transactions on, vol. 49, pp. 179-181, 2002. [39] V. Parkhutik, “New effects in the kinetics of the electrochemical oxidation of silicon,” Electrochimica Acta, vol. 45, pp. 3249-3254, 2000. [40] M. Grecea, C. Rotaru, N. Nastase, and G. Craciun, “Physical properties of SiO2 thin films obtained by anodic oxidation,” Journal of Molecular Structure, vol. 480-481, pp. 607-610, 1999. [41] J. A. Bardwell, N. Draper, and P. Schmuki, “Growth and characterization of anodic oxides on Si(100) formed in 0.1 M hydrochloric acid,” Journal of Applied Physics, vol. 79, pp. 8761-8769, 1996. [42] S. K. Sharma, B. C. Chakravarty, S. N. Singh, B. K. Das, D. C. Parashar, J. Rai, et al., “Kinetics of growth of thin anodic oxides of silicon at constant voltages,” Journal of Physics and Chemistry of Solids, vol. 50, pp. 679-684, 1989. [43] G. C. Jain, A. Prasad, and B. C. Chakravarty, “On the Mechanism of the Anodic Oxidation of Si at Constant Voltage,” Journal of The Electrochemical Society, vol. 126, pp. 89-92, 1979. [44] P. F. Schmidt, T. W. O’Keeffe, J. Oroshnik, and A. E. Owen, “Doped Anodic Oxide Films for Device Fabrication in Silicon: II . Diffusion Sources of Controlled Composition, and Diffusion Results,” Journal of The Electrochemical Society, vol. 112, pp. 800-807, 1965. [45] M.-J. Jeng and J.-G. Hwu, “Thin-gate oxides prepared by pure water anodization followed by rapid thermal densification,” Electron Device Letters, IEEE, vol. 17, pp. 575-577, 1996. [46] S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd ed. New York: Wiley Inter-science. [47] E. H. Nicollian and J. R. Brews, MOS physics and Technology. New York: John Wiley & Sons. [48] T. Yang, Y. Liu, P. D. Ye, Y. Xuan, H. Pal, and M. S. Lundstrom, “Inversion capacitance-voltage studies on GaAs metal-oxide-semiconductor structure using transparent conducting oxide as metal gate,” Applied Physics Letters, vol. 92, pp. 252105-252105-3, 2008. [49] C.-H. Choi, Y. Wu, G. Jung-Suk, Y. Zhiping, and R. W. Dutton, “Capacitance reconstruction from measured C-V in high leakage, nitride/oxide MOS,” Electron Devices, IEEE Transactions on, vol. 47, pp. 1843-1850, 2000. [50] K. J. Yang and H. Chenming, “MOS capacitance measurements for high-leakage thin dielectrics,” Electron Devices, IEEE Transactions on, vol. 46, pp. 1500-1501, 1999. [51] K. Yang, K. Ya-Chin, and H. Chenming, “Quantum effect in oxide thickness determination from capacitance measurement,” in VLSI Technology, 1999. Digest of Technical Papers. 1999 Symposium on, 1999, pp. 77-78. [52] Berkeley Device Group. [Online] Available: http://www-device.eecs.berkeley.edu/index.htm [53] M. Depas, R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, “Electrical characteristics of Al/SiO2/n-Si tunnel diodes with an oxide layer grown by rapid thermal oxidation,” Solid-State Electronics, vol. 37, pp. 433-441, 1994. [54] C.-Y. Liu, B.-Y. Chen, and T.-Y. Tseng, “Deep depletion phenomenon of SrTiO3 gate dielectric capacitor,” Journal of Applied Physics, vol. 95, pp. 5602-5607, 2004. [55] C.-Y. Liu and T.-Y. Tseng, “Correlation between deep depletion and current–voltage saturation of SrTiO3 gate dielectric capacitor,” Ceramics International, vol. 30, pp. 1101-1106, 2004. [56] Y. Nian, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices,” Electron Devices, IEEE Transactions on, vol. 46, pp. 1464-1471, 1999. [57] R. L. V. M. M. Depas, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p-Si tunnel diodes,” Semicond. Sci. Technol., vol. 7, pp. 1476-1483, 1992. [58] F. Li, S. P. Mudanai, Y.-Y. Fan, L. F. Register, and S. K. Banerjee, “Physically based quantum-mechanical compact model of MOS devices substrate-injected tunneling current through ultrathin (EOT ∼ 1 nm) SiO2 and high-κ gate stacks,” Electron Devices, IEEE Transactions on, vol. 53, pp. 1096-1106, 2006. [59] W.-C. Lee and C. Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling,” Electron Devices, IEEE Transactions on, vol. 48, pp. 1366-1373, 2001. [60] C.-W. Lee, “A Comprehensve Quantum-Mechanical Model for C-V and I-V Characteristics in Ultrathin MOS Structure and Experimental Verification,” Master Thesis, Graduate Institute of Electronics Engineering National Taiwan University, Taipei, Taiwan, R.O.C., 2013. [61] R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Applied Physics Letters, vol. 22, pp. 562-564, 1973. [62] W. E. Dahlke and S. M. Sze, “Tunneling in metal-oxide-silicon structures,” Solid-State Electronics, vol. 10, pp. 865-873, 1967. [63] Z. Zhang, H. von Wenckstern, M. Schmidt, and M. Grundmann, “Wavelength selective metal-semiconductor-metal photodetectors based on (Mg,Zn)O-heterostructures,” Applied Physics Letters, vol. 99, pp. 083502-083502-3, 2011. [64] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, et al., “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Applied Physics Letters, vol. 98, pp. 061108-061108-3, 2011. [65] H. C. Lee, Y. K. Su, J. C. Lin, Y. C. Cheng, S. L. Wu, and Y. D. Jhou, “AlInGaN Metal-Insulator-Semiconductor Photodetectors at UV-C 280 nm,” Electrochemical and Solid-State Letters, vol. 12, pp. H357-H360, 2009. [66] P.-H. Tseng and J.-G. Hwu, “Non-Planar Substrate Metal-Oxide-Semiconductor Photo-Capacitance Detectors with Enhanced Deep Depletion Sensitivity at Convex Corner,” ECS Journal of Solid State Science and Technology, vol. 3, pp. Q104-Q108, 2014. [67] H. Satoh, A. Ono, and H. Inokawa, “Enhanced Visible Light Sensitivity by Gold Line-and-Space Grating Gate Electrode in Thin Silicon-On-Insulator p-n Junction Photodiode,” Electron Devices, IEEE Transactions on, vol. 60, pp. 812-818, 2013. [68] S. Lee, Y. Lee, D. Young Kim, E. B. Song, and S. Min Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Applied Physics Letters, vol. 102, pp. 242114-242114-4, 2013. [69] S. Demirezen, Ş. Altındal, and İ. Uslu, “Two diodes model and illumination effect on the forward and reverse bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature,” Current Applied Physics, vol. 13, pp. 53-59, 2013. [70] L.-B. Luo, X.-B. Yang, F.-X. Liang, J.-S. Jie, Q. Li, Z.-F. Zhu, et al., “Transparent and flexible selenium nanobelt-based visible light photodetector,” CrystEngComm, vol. 14, pp. 1942-1947, 2012. [71] C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Research Letters, vol. 7, pp. 1-6, 2012. [72] K. Abid and F. Rahman, “Gated Lateral p-i-n Junction Device for Light Sensing,” Photonics Technology Letters, IEEE, vol. 23, pp. 911-913, 2011. [73] T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, et al., “Fabrication of High-Quality In2Se3 Nanowire Arrays toward High-Performance Visible-Light Photodetectors,” ACS Nano, vol. 4, pp. 1596-1602, 2010. [74] F. Yakuphanoglu, “Controlling of silicon–insulator–metal junction by organic semiconductor polymer thin film,” Synthetic Metals, vol. 160, pp. 1551-1555, 2010. [75] K. Sun, Y. Jing, N. Park, C. Li, Y. Bando, and D. Wang, “Solution Synthesis of Large-Scale, High-Sensitivity ZnO/Si Hierarchical Nanoheterostructure Photodetectors,” Journal of the American Chemical Society, vol. 132, pp. 15465-15467, 2010. [76] L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, et al., “Single-Crystalline CdS Nanobelts for Excellent Field-Emitters and Ultrahigh Quantum-Efficiency Photodetectors,” Advanced Materials, vol. 22, pp. 3161-3165, 2010. [77] Z. Yu, M. Aceves-Mijares, J. A. Luna Lopez, and J. Deng, “Nanocrystalline Si-based metal-oxide-semiconductor photodetectors,” in Proc. SPIE 7381, International Symposium on Photoelectronic Detection and Imaging 2009: Material and Device Technology for Sensors, 2009, pp. 73811H-73811H-7. [78] Z. Yu and M. Aceves-Mijares, “A ultraviolet-visible-near infrared photodetector using nanocrystalline Si superlattice,” Applied Physics Letters, vol. 95, pp. 081101-081101-2, 2009. [79] Y.-Y. Noh, D.-Y. Kim, and K. Yase, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance,” Journal of Applied Physics, vol. 98, pp. 074505-074505-7, 2005. [80] E. Lee, D.-I. Moon, J.-H. Yang, K. S. Lim, and Y.-K. Choi, “Transparent Zinc Oxide Gate Metal–Oxide–Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” Electron Device Letters, IEEE, vol. 30, pp. 493-495, 2009. [81] C.-C. Lin, P.-L. Hsu, L. Lin, and J.-G. Hwu, “Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes,” Journal of Applied Physics, vol. 115, pp. 124109-124109-6, 2014. [82] E. Monroy, F. Calle, J. L. Pau, E. Munoz, and F. Omnes, “Low-noise metal-insulator-semiconductor UV photodiodes based on GaN,” Electronics Letters, vol. 36, pp. 2096-2098, 2000. [83] M. Seto, C. Rochefort, S. de Jager, R. F. M. Hendriks, G. W. ’t Hooft, and M. B. van der Mark, “Low-leakage-current metal–insulator–semiconductor–insulator–metal photodetector on silicon with a SiO2 barrier-enhancement layer,” Applied Physics Letters, vol. 75, pp. 1976-1978, 1999. [84] H. Yong-Tian, L. Ming-Fu, T. Low, and K. Dim-Lee, “Metal gate work function engineering on gate leakage of MOSFETs,” Electron Devices, IEEE Transactions on, vol. 51, pp. 1783-1789, 2004. [85] D. J. DiMaria and E. Cartier, “Mechanism for stress‐induced leakage currents in thin silicon dioxide films,” Journal of Applied Physics, vol. 78, pp. 3883-3894, 1995. [86] D. J. Dumin and J. R. Maddux, “Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides,” Electron Devices, IEEE Transactions on, vol. 40, pp. 986-993, 1993. [87] R. Rofan and H. Chenming, “Stress-induced oxide leakage,” Electron Device Letters, IEEE, vol. 12, pp. 632-634, 1991. [88] C.-C. Lin and J.-G. Hwu, “Comparison of the Reliability of Thin Al2O3 Gate Dielectrics Prepared by In Situ Oxidation of Sputtered Aluminum in Oxygen Ambient With and Without Nitric Acid Compensation,” Device and Materials Reliability, IEEE Transactions on, vol. 11, pp. 227-235, 2011. [89] C.-H. Chang and J.-G. Hwu, “Reliability of Low-Temperature-Processing Hafnium Oxide Gate Dielectrics Prepared by Cost-Effective Nitric Acid Oxidation Technique,” Device and Materials Reliability, IEEE Transactions on, vol. 7, pp. 611-616, 2007. [90] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, et al., “Review on high-k dielectrics reliability issues,” Device and Materials Reliability, IEEE Transactions on, vol. 5, pp. 5-19, 2005. [91] G. Congedo, A. Lamperti, O. Salicio, and S. Spiga, “Multi-Layered Al2O3/HfO2/SiO2/Si3N4/SiO2 Thin Dielectrics for Charge Trap Memory Applications,” ECS Journal of Solid State Science and Technology, vol. 2, pp. N1-N5, 2013. [92] N.-H. Chen, C.-Y. Wang, J.-C. Hwang, and F.-S. Huang, “MOCVD Al Nanocrystals Embedded in AlOxNy Thin Films for Nonvolatile Memory,” ECS Journal of Solid State Science and Technology, vol. 1, pp. P190-P196, 2012. [93] M. C. Hamilton, S. Martin, and J. Kanicki, “Thin-film organic polymer phototransistors,” Electron Devices, IEEE Transactions on, vol. 51, pp. 877-885, 2004. [94] C. Kittel, Introduction to solid state physics, 8th ed.: John Wiley & Sons, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18390 | - |
| dc.description.abstract | 非理想因子一直存在於電子元件之中,並隨著元件的微縮,影響隨之加劇。
金氧半元件中橫向的不均勻性(平行於通道或是閘極氧化層方向)為其中一非理 想因子。在眾多橫向的不均勻現象之中,邊際電場效應(fringing field effect)為電場分布的不均勻。實驗結果顯示,不論照光與否,超薄閘極氧化層P 型金氧半電容(p-MOSCAP)之反轉區電流皆主受控於電洞電流。此電洞電流的大小受到存在於二氧化矽�矽介面電洞的等效蕭基能障高度(effective Schottky barrier height)所支配,並被邊際電場效應所強化。換句話說,元件周長區域電洞的等效蕭基能障大小調控元件的反轉區電流。在本論文之中,探討定電壓應力操作對此P 型金氧半電容之電特性所造成的影響及其可能的應用。負偏壓或正偏壓的定電壓應力(constant voltage stress)操作,為一將電子捕陷於二氧化矽氧化層中或釋放的方法,並藉由此被捕陷或釋放的電子調控電洞的等效蕭基能障高度。當元件施加適當的負偏壓與正偏壓的定電壓應力操作後,可得雙態的反轉區電流以及電容。在施加負偏壓的定電壓應力操作後,由於有些許的電子被捕陷於二氧化矽氧化層之中,而屏蔽反轉區電子的生成,反轉區電子數量驟降,降低二氧化矽氧化層的壓降,而增大電洞的等效蕭基能障高度。此外,二氧化矽氧化層電壓的下降則會增加落在矽基板上的電壓,使得矽基板的空乏區變大。因此,可觀察到降低的反轉區電流與電容。值得注意的是,此些許被捕陷於二氧化矽氧化層中的電子,會使反轉區電容的頻率響應消失。在另一方面,正偏壓的定電壓應力操作則可使原本被捕陷於二氧化矽氧化層內的電子被釋放,使反轉區的電流與電容上升回復到原始狀態。此雙態的反轉區電流以及電容現象提供了可能的應用於記憶體元件之中。最後,將反轉區電流隨負偏壓的定電壓應力操作而下降的特性應用於可見光偵測器之上。由於被捕陷於二氧化矽氧化層中的電子可大幅降低元件的暗電流,此光偵測器的光敏感度(photo sensitivity)可以被有效的改善。此方法同時提供了一個可能的應用於改善可見光偵測器的光敏感度之上。 | zh_TW |
| dc.description.abstract | Non-ideal factors always exist in electrical devices and the factors become significant in downscaling devices. Lateral non-uniformity, along the channel or in a direction paralleling to dielectric layers, is one of the non-ideal factors in the MOS devices. Among various phenomena of the lateral non-uniformity, fringing field effect is the significant one in the electrical field distribution. The experimental results indicate that the hole current dominates the inversion gate current of a p-MOSCAP with an ultra-thin SiO2 layer, both under the dark and illumination conditions. The value of the hole current is modulated by the effective Schottky barrier height of hole appearing at SiO2/Si interface and is further enhanced by the fringing field effect. In other words, the value of the effective Schottky barrier height of hole in the device-edge region modulates the value of the inversion gate current. In this dissertation, the effects of the constant voltage stress treatments on the electrical characterization of the p MOSCAP are investigated. Besides, their potential application is also proposed. A negative/positive constant voltage stress treatment is utilized as a method to trap/de trap electrons in SiO2, and further modulates the value of the effective Schottky barrier height. Two-state inversion gate current and inversion capacitance are achieved after applying suitable treatments. After applying a negative constant voltage stress treatment onto a p-MOSCAP, a few electrons are trapped in IV SiO2. These trapped electrons screen the inversion electrons at Si surface, reduce the voltage drop of SiO2, and further increase the effective Schottky barrier height of hole. Besides, the reduced SiO2 voltage enlarges the Si surface band bending and broadens the depletion width. Therefore, evident decrements in the inversion gate current and inversion capacitance are observed. In particular, due to few inversion electrons atSi surface, the response of the inversion capacitances to AC frequencies disappears. In contrast, the electrons in SiO2 are de-trapped after applying a positive constant voltage stress treatment onto the device. Then, the reduced inversion gate current and the reduced inversion capacitance increase and revert to their original statuses. The two-state inversion gate current and inversion capacitance phenomena provide a potential application in memory devices. Subsequently, the negative constant voltage stress treatment is also applied onto a visible-light MOS photodetector. A few electrons are trapped in SiO2 of the device, and greatly reduce the inversion dark current. Due to the evident decrement in the inversion dark current, the photo sensitivity of the photodetector is enhanced. It provides a potential application in the enhancement of the photo sensitivity of a visible-light MOS photodetector. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:02:48Z (GMT). No. of bitstreams: 1 ntu-103-D00943022-1.pdf: 10270394 bytes, checksum: 20579b7d2927db22e1208f2586f3b906 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
摘要------------------------------------------------------------------------------------------------I Abstract-----------------------------------------------------------------------------------------III Contents------------------------------------------------------------------------------------------V Table Captions---------------------------------------------------------------------------------IX Figure Captions-------------------------------------------------------------------------------XI Chapter 1 Introduction------------------------------------------------------------------------1 1-1 Motivation------------------------------------------------------------------------------1 1-2 Anodization System ------------------------------------------------------------------4 1-3 Oxide Thickness Determination ----------------------------------------------------6 1-4 Tunneling Mechanism of a p-MOSCAP ------------------------------------------8 1-5 MOS Photodetector -----------------------------------------------------------------11 1-6 Summary------------------------------------------------------------------------------13 Chapter 2 Experimental Details of p-MOSCAPs with Al/Ultra-Thin SiO2/p-Si Structures --------------------------------------------------------------------------------------17 2-1 Fabrication of p-MOSCAPs -------------------------------------------------------17 2-2 Measurement Details ---------------------------------------------------------------18 Chapter 3 Reduced Inversion Gate Current of a Negative-Constant-Voltage-Stress Treated p-MOSCAP ------------------------------25 3-1 Introduction---------------------------------------------------------------------------------25 3-2 Results and Discussion--------------------------------------------------------------26 3-2-1 Reduced Inversion Gate Current Behavior ------------------------------26 3-2-2 Mechanism of the Inversion Gate Current ------------------------------29 3-2-2-1 Effect of the Number of the Inversion electrons ---------------29 3-2-2-2 Effect of the Fringing Field ---------------------------------------32 3-2-3 Mechanism of the Reduced Inversion Gate Current -------------------34 VI 3-3 Summary------------------------------------------------------------------------------35 Chapter 4 Two-State Inversion Gate Current of a p-MOSCAP --------------------45 4-1 Introduction --------------------------------------------------------------------------45 4-2 Results and Discussion--------------------------------------------------------------46 4-2-1 Two-State Inversion Gate Current Behavior ----------------------------46 4-2-2 Different Extent of Two-State Inversion Gate Current ----------------51 4-2-3 Universal Behavior of Two-State Inversion Gate Current ------------54 4-3 Summary------------------------------------------------------------------------------55 Chapter 5 Two-State Inversion Capacitance of a p-MOSCAP at Varied AC Frequencies ------------------------------------------------------------------------------------67 5-1 Introduction --------------------------------------------------------------------------67 5-2 Results and Discussion--------------------------------------------------------------68 5-2-1 Two-State Inversion Capacitance Behavior at Varied AC Frequencies ---------------------------------------------------------------------------------68 5-2-2 Mechanism and Simulation of the Two-State Inversion Capacitance ---------------------------------------------------------------------------------73 5-2-3 Endurance of the Two-State Inversion Capacitance -------------------77 5-2-4 Two-State Inversion Capacitance with Fewer Trapped Electrons----78 5-3 Summary------------------------------------------------------------------------------80 Chapter 6 Photo Sensitivity Enhancement in an MOS Photodetector -------------93 6-1 Introduction --------------------------------------------------------------------------93 6-2 Results and Discussion--------------------------------------------------------------94 6-2-1 Photo Sensitivity Enhancement -------------------------------------------94 6-2-2 Mechanisms of Inversion Dark Current and Photocurrent ------------95 6-2-3 Mechanism of Photo Sensitivity Enhancement -------------------------97 6-2-4 Different Values of Enhanced Photo Sensitivities ----------------------99 VII 6-2-5 Photo Sensitivity and Responsivity Comparison ---------------------102 6-3 Summary----------------------------------------------------------------------------103 Chapter 7 Conclusion and Perspective -------------------------------------------------117 7-1 Conclusion --------------------------------------------------------------------------117 7-2 Perspective and Future Work ----------------------------------------------------120 References-------------------------------------------------------------------------------------123 Publication List------------------------------------------------------------------------------133 | |
| dc.language.iso | en | |
| dc.title | 定電壓應力操作對超薄氧化層金氧半電容元件之電特性影響分析及其元件應用 | zh_TW |
| dc.title | Effect of Constant Voltage Stress Treatments on the
Electrical Characterization and Device Application of MOS Capacitor with Ultra-Thin Oxide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭晃忠,吳幼麟,曾俊元,林浩雄,李佩雯 | |
| dc.subject.keyword | 金氧半電容,超薄閘極氧化層,不均勻性,邊際電場效應,蕭基能障,定電壓應力操作,金氧半光偵測器, | zh_TW |
| dc.subject.keyword | MOSCAP,ultra-thin SiO2,non-uniformity,fringing field effect,Schottky barrier,constant voltage stress,MOS photodetector, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-09-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 10.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
