請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18386
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林金福 | |
dc.contributor.author | Chun-Kai Tsai | en |
dc.contributor.author | 蔡竣凱 | zh_TW |
dc.date.accessioned | 2021-06-08T01:02:37Z | - |
dc.date.copyright | 2014-10-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-09-29 | |
dc.identifier.citation | 1. http://zh.wikipedia.org/wiki/纳米科技
2. http://en.wikipedia.org/wiki/Composite_material 3. Giannelis, E. P., Advanced Materials 1996, 8 (1), 29-35. 4. Tu, C.W.; Liu, K.Y.; Chien, A.T.; Yen, M.H.; Weng, T. H.; Ho, K.C.; Lin, K.F. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (1), 47-53. 5. Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Applied Clay Science 2007, 36 (1–3), 22-36. 6. Okada, A.; Kawasumi, M.; Usuki, A.; Kojima, Y.; Kurauchi, T.; Kamigaito, O. MRS Online Proceedings Library 1989, 171. 7. 徐志宇, 幾丁聚醣/蒙脫石複合材料之支架備製, 國立台灣大學材料與工程學研究所, 碩士論文, 2003 8. 蔡宗燕. 強塑廣用新知. 1998, 76, 58. 9. Lin, K.F.; Lin, S.C.; Chien, A.T.; Hsieh, C.C.; Yen, M.H.; Lee, C.H.; Lin, C.S.; Chiu, W.Y.; Lee, Y.H. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (19), 5572-5579. 10. Utracki, L. A.; Sepehr, M.; Boccaleri, E. Polymers for Advanced Technologies 2007, 18 (1), 1-37. 11. Chu, C.C.; Chiang, M.L.; Tsai, C.M.; Lin, J.J. Macromolecules 2005, 38 (15), 6240-6243. 12. Lin, J.J.; Cheng, I. J.; Wang, R.; Lee, R.J. Macromolecules 2001, 34 (26), 8832-8834. 13. Lin, J.J.; Lin, S.F. Journal of Colloid and Interface Science 2003, 258 (1), 155-162. 14. Lin, J. J.; Speranza, G. P.; Waddill, H. G. Journal of Applied Polymer Science 1997, 66 (12), 2339-2346. 15. Tseng, F.P.; Chang, F.C.; Lin, S.F.; Lin, J.J. Journal of Applied Polymer Science 1999, 71 (13), 2129-2139. 16. Lin, J.J.; Chen, I. J.; Chou, C.-C. Macromolecular Rapid Communications 2003, 24 (8), 492-495. 17. Chou, C.C.; Shieu, F.S.; Lin, J.J. Macromolecules 2003, 36 (7), 2187-2189. 18. Lee, D. C.; Jang, L. W. Journal of Applied Polymer Science 1996, 61 (7), 1117-1122. 19. Lin, K.F.; Lin, S.C.; Chien, A.T.; Hsieh, C.C.; Yen, M.H.; Lee, C.H.; Lin, C.S.; Chiu, W.Y.; Lee, Y.H. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (19), 5572-5579. 20. Fudala, A.; Palinko, I.; Kiricsi, I. Inorganic Chemistry 1999, 38 (21), 4653-4658. 21. Naidja, A.; Huang, P. M. Applied Clay Science 1994, 9 (4), 265-281. 22. 鄭玉慧,“NaPSS聚電解質溶液行為之探討”,國立臺灣大學材料科學與工程學研究所,碩士論文,1999. 23. Lin, K.J.; Dai, C.A.; Lin, K.F. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (2), 459-466. 24. Blicke, F. F., in “Organic Reactions,” John Wiley & Sons, Inc., New York, N. Y., 1942, 1, 303. 25. Su, H.L.; Lin, S.H.; Wei, J.C.; Pao, I. C.; Chiao, S. H.; Huang, C. C.; Lin, S. Z.; Lin, J.J. PLoS ONE 2011, 6 (6), e21125. 26. Diebold, U. Surface Science Reports 2003, 48 (5–8), 53-229. 27. Hanaor, D. H.; Sorrell, C. J Mater Sci 2011, 46 (4), 855-874. 28. Pauling L, Sturdivant JH . Kristullogr 1928,68, 239-256. 29. Ohtani, B.; Prieto-Mahaney, O. O.; Li, D.; Abe, R. Journal of Photochemistry and Photobiology A: Chemistry 2010, 216 (2–3), 179-182. 30. Bokhimi, X.; Morales, A.; Aguilar, M.; Toledo-Antonio, J. A.; Pedraza, F. International Journal of Hydrogen Energy 2001, 26 (12), 1279-1287. 31. D. Reyes-Coronado, G. Rodr’ıguez-Gattorno, M.E.-Pesqueira, C. Cab, R. de Coss1, G. Oskam, Nanotechnology 2008,19, 145605 32. Serpone, N.; Lawless, D.; Khairutdinov, R.; Pelizzetti, E. The Journal of Physical Chemistry 1995, 99 (45), 16655-16661. 33. Al-Ekabi, H.; Serpone, N. The Journal of Physical Chemistry 1988, 92 (20), 5726-5731. 34. Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. Journal of Photochemistry and Photobiology A: Chemistry 2001, 140 (2), 163-172. 35. Kameshima, Y.; Tamura, Y.; Nakajima, A.; Okada, K. Applied Clay Science 2009, 45 (1–2), 20-23. 36. Wang, C.; Shi, H.; Zhang, P.; Li, Y. Applied Clay Science 2011, 53 (4), 646-649. 37. Li, Y.; Liu, J. R.; Jia, S. Y.; Guo, J. W.; Zhuo, J.; Na, P. Chemical Engineering Journal 2012, 191 (0), 66-74. 38. Yoneyama, H.; Haga, S.; Yamanaka, S. The Journal of Physical Chemistry 1989, 93 (12), 4833-4837. 39. Linsebigler, A. L.; Lu, G.; Yates, J. T. Chemical Reviews 1995, 95 (3), 735-758. 40. Dvininov, E.; Popovici, E.; Pode, R.; Cocheci, L.; Barvinschi, P.; Nica, V. Journal of Hazardous Materials 2009, 167 (1–3), 1050-1056. 41. Yuan, L.; Huang, D.; Guo, W.; Yang, Q.; Yu, J. Applied Clay Science 2011, 53 (2), 272-278. 42. Lee, S.-W.; Ichinose, I.; Kunitake, T. Langmuir 1998, 14 (10), 2857-2863. 43. Capecchi, G.; Faga, M. G.; Martra, G.; Coluccia, S.; Iozzi, M. F.; Cossi, M. Research on Chemical Intermediates 2007, 33 (3), 269-284. 44. Gerischer, H.; Tributsch, H. Ber. Bunsenges. Physical Chemistry 1968, 72 (3), 437-445. 45. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261 (5559), 402-403. 46. O'Regan, B.; Gratzel, M. Nature 1991, 353 (6346), 737-740. 47. Gratzel, M. Nature 2001, 414 (6861), 338-344. 48. Gratzel, M. Accounts of Chemical Research 2009, 42 (11), 1788-1798. 49. 王麗萍、蔡松雨,工業材料雜誌 2010;280:143-153 50. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M. The Journal of Physical Chemistry B 2003, 107 (34), 8981-8987. 51. Gratzel, M. Inorganic Chemistry 2005, 44 (20), 6841-6851. 52. Gunes, S.; Sariciftci, N. S. Inorganica Chimica Acta 2008, 361 (3), 581-588. 53. Snaith, H. J.; Schmidt-Mende, L. Advanced Materials 2007, 19 (20), 3187-3200. 54. Tachibana, Y.; Moser, J. E.; Gratzel, M.; Klug, D. R.; Durrant, J. R. The Journal of Physical Chemistry 1996, 100 (51), 20056-20062. 55. Improta, R.; Barone, V. Chemical Reviews 2004, 104 (3), 1231-1254. 56. Bach, U.; Tachibana, Y.; Moser, J.-E.; Haque, S. A.; Durrant, J. R.; Gratzel, M.; Klug, D. R. Journal of the American Chemical Society 1999, 121 (32), 7445-7446. 57. Kuang, D.; Klein, C.; Snaith, H. J.; Moser, J.-E.; Humphry-Baker, R.; Comte, P.; Zakeeruddin, S. M.; Gratzel, M. Nano Letters 2006, 6 (4), 769-773. 58. Kruger, J.; Plass, R.; Gratzel, M.; Cameron, P. J.; Peter, L. M. The Journal of Physical Chemistry B 2003, 107 (31), 7536-7539. 59. Menzies, D. B.; Dai, Q.; Cheng, Y.-B.; Simon, G. P.; Spiccia, L. Comptes Rendus Chimie 2006, 9 (5–6), 713-716. 60. Tennakone, K.; R. R. A. Kumara, G.; R. M. Kottegoda, I.; P. S. Perera, V. Chemical Communications 1999, (1), 15-16. 61. Ding, I. K.; Tetreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Gratzel, M.; McGehee, M. D.Advanced Functional Materials 2009, 19 (15), 2431-2436. 62. Cappel, U. B.; Gibson, E. A.; Hagfeldt, A.; Boschloo, G. The Journal of Physical Chemistry C 2009, 113 (15), 6275-6281. 63. Ding, I. K.; Melas-Kyriazi, J.; Cevey-Ha, N.-L.; Chittibabu, K. G.; Zakeeruddin, S. M.; Gratzel, M.; McGehee, M. D. Organic Electronics 2010, 11 (7), 1217-1222. 64. Antonelli, D. M.; Ying, J. Y. Angewandte Chemie International Edition in English 1995, 34 (18), 2014-2017. 65. Burnside, S. D.; Shklover, V.; Barbe, C.; Comte, P.; Arendse, F.; Brooks, K.; Gratzel, M. Chemistry of Materials 1998, 10 (9), 2419-2425. 66. K. Y. Liu, “Synthesis and Applications of Crosslinkable Ruthenium Complex on Dye-sensitized Solar Cells”, Ph.D. Thesis, National Taiwan University, 2010. 67. Peng, B.; Jungmann, G.; Jager, C.; Haarer, D.; Schmidt, H.-W.; Thelakkat, M. Coordination Chemistry Reviews 2004, 248 (13–14), 1479-1489. 68. 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震,科儀新知 2007;5(28):22-30 69. P. Pechy, F. P. Rotzinger, M. K. Nazeeruddin, O. Kohle, S. M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, J. Chem. Soc., Chem. Commun. 1995,65-66 70. Rhee, S.-W.; Kwon, W. Korean J. Chem. Eng. 2011, 28 (7), 1481-1494. 71. Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Gratzel, M. Nano Letters 2007, 7 (11), 3372-3376. 72. Tennakone, K.; R. R. A. Kumara, G.; R. M. Kottegoda, I.; P. S. Perera, V. Chemical Communications 1999, (1), 15-16. 73. O'Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. Chemistry of Materials 2002, 14 (12), 5023-5029. 74. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395 (6702), 583-585. 75. Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-L.; Yi, C.; Nazeeruddin, M. K.; Gratzel, M. Journal of the American Chemical Society 2011, 133 (45), 18042-18045. 76. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295 (5564), 2425-2427. 77. Kang, H. S.; Kim, K. H.; Kim, M. S.; Park, K. T.; Kim, K. M.; Lee, T. H.; Lee, C. Y.; Joo, J.; Lee, D. W.; Hong, Y. R.; Kim, K.; Lee, G. J.; Jin, J. I. Synthetic Metals 2002, 130 (3), 279-283. 78. Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S. Advanced Materials 2010, 22 (20), E150-E155. 79. Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485 (7399), 486-489. 80. Rostalski, J.; Meissner, D. Solar Energy Materials and Solar Cells 2000, 61 (1), 87-95. 81. A. J. Bard, “Electroanalytical Chemistry a Series of Advances”, 1970,4 82. J. R. Macdonald, “Impedance Spectroscopy Emphasizing Solid Materials and Systems”,1987 83. 蕭鈞瀚,“以聚電解質/奈米碳管複合材料製作軟質固態電解質在染料敏化太陽能電池上之應用”,國立臺灣大學材料科學與工程學研究所,碩士論文,2014. 84. de Jongh, P. E.; Vanmaekelbergh, D. The Journal of Physical Chemistry B 1997, 101 (14), 2716-2722. 85. Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I. The Journal of Physical Chemistry B 1997, 101 (49), 10281-10289. 86. Schlichthorl, G.; Park, N. G.; Frank, A. J. The Journal of Physical Chemistry B 1999, 103 (5), 782-791. 87. Park, N. G.; van de Lagemaat, J.; Frank, A. J. The Journal of Physical Chemistry B 2000, 104 (38), 8989-8994. 88. 文克剛,' 可交聯光敏劑與雙成份離子溶液電解質在染敏太陽能電池光電性質之研究',台灣大學高分子科學與工程研究所 碩士論文,2010 89. Duffy, N. W.; Peter, L. M.; Rajapakse, R. M. G.; Wijayantha, K. G. U. The Journal of Physical Chemistry B 2000, 104 (38), 8916-8919. 90. Peter, L. M.; Duffy, N. W.; Wang, R. L.; Wijayantha, K. G. U. Journal of Electroanalytical Chemistry 2002, 524–525 (0), 127-136. 91. Boschloo, G.; Hagfeldt, A. The Journal of Physical Chemistry B 2005, 109 (24), 12093-12098. 92. 程宥鈞,' 以陰離子和陽離子脫層蒙脫石製備離子液體複合材料之製程及阻抗分析',台灣大學工學院材料科學與工程學研究所碩士論文 2013 93. Navarrete, J. T. L.; Hernandez, V.; Ramirez, F. J. Biopolymers 1994, 34 (8), 1065-1077. 94. Fischer, G.; Cao, X.; Cox, N.; Francis, M. Chemical Physics 2005, 313 (1–3), 39-49. 95. Yum, J.H.; Kim, S.-S.; Kim, D.Y.; Sung, Y.E. Journal of Photochemistry and Photobiology A: Chemistry 2005, 173 (1), 1-6. 96. Ngamsinlapasathian, S.; Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Solar Energy Materials and Solar Cells 2005, 86 (2), 269-282 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18386 | - |
dc.description.abstract | 本實驗室過去發現以無乳化劑聚合法製備的脫層蒙脫石(exMMT)添加至防曬乳液中對皮膚有抗氧化能力,在染料敏化太陽能電池應用中甚至可將電解液的I-氧化至I5-,因此本論文進一步探討exMMT吸引電子的能力。首先將蒙脫石(MMT)分別以陰離子(無乳化劑乳化聚合)和陽離子(帶陽離子胺鹽的長鏈分子)脫層法將其脫層,從TEM觀察中得知exMMT的大小均介於數百奈米之間,並從TGA結果計算脫層劑殘留量約0.1~0.3 g/g-exMMT。接著利用exMMT具有吸附胺基的特性來吸附胺基酸。由TGA結果得知陰離子脫層法之exMMT的胺基酸吸附量隨胺基酸添加量增加而下降,而陽離子脫層法之exMMT則反之。另外以FTIR觀察胺基酸官能基變化,在陰離子脫層法之exMMT中可發現-NH3+ 官能基特徵峰,而陽離子脫層法者因具有相同官能基覆蓋了其訊號;-COOH官能基特徵峰因陰離子脫層法之exMMT具有脫層劑PMMA的訊號而被覆蓋,陽離子脫層法者則可被觀察到。接著從TEM觀察到二氧化鈦顆粒與胺基酸官能基-COOH相互吸引而成功吸附於exMMT而得到exMMT/TiO2複合材料,輔以元素分析及繞射圖譜加以驗證。在亞甲基藍添加exMMT/TiO2複合材料之光催化實驗中,從紫外光可見光譜與螢光放光光譜觀察到exMMT具抓二氧化鈦之光電子的能力進而抑制其降解亞甲基藍的催化能力,其中含有陰離子脫層法之exMMT的複合材料效果較好。固態染料敏化太陽能電池的應用中,將exMMT/TiO2複合材料添加至元件的不同位置並觀察元件表現。實驗結果顯示複合材料位於二氧化鈦多孔層之上或是位於二氧化鈦緻密層之上的元件,在照光下能使二氧化鈦能隙上升、開路電壓(Voc)變大及電子生命週期(τIMVS)變長;而添加一層複合材料在FTO導電玻璃之上可吸引電子並快速導入FTO導電玻璃使短路電流(Jsc)上升,且電子傳遞週期(τIMPS)變短,光電轉換效率從0.691 ± 0.035 % 上升至0.719 ± 0.046 %。此外,在交流阻抗分析觀察到照光時阻抗變小,未照光時阻抗變大,表示複合材料對於不同方向的電子具有整流效果。 | zh_TW |
dc.description.abstract | A novel method using the soap-free emulsion polymerization to exfoliate mortmorillonite (MMT) was discovered by our laboratory. We found that sunscreen with the addition of exfoliated MMT (exMMT) can protect skin from getting oxidized. By using exMMT to gel the ionic liquid electrolyte for dye sensitized solar cell (DSSC), I- was oxidized to I3- and I5- improving the charge transportation. As a result, to investigate the properties of exMMT associated with the attraction of photoelectrons was the main objective of this master thesis. Also, exMMT was farbricated by exfoliating MMT with a kind of amine-terminated polymer in order to compare the results with soap-free emulsion polymerization method. TEM images indicated that the size of exMMT was ~300 nm in width. Because exMMT has a strong affinity for amine group, FTIR was used to analyze the adsorption of amino acid by exMMT. The results showed that the peak of –NH3+ was observed for the samples with exMMT prepared by the anionic method, but not by the cationic method which had the same –NH3+ functional group; however, the peak of –COOH exhibited the opposite result which was found for the exMMT prepared by the cationic method, but not by the anionic method. Next, from the TEM image, we found that TiO2 nanoparticles were successfully adsorbed on exMMT/amino acid to form an exMMT/TiO2 composite with aid of –COOH functional groups, which were further comfirmed by EDS measurement and X-ray diffraction pattern. After that, methyl blue solution with exMMT/TiO2 composites was exposed to ultraviolet lamp for different time. These PL and UV-vis spectra of methyl blue demonstrated that composite could hindered photodegradation reaction due to that exMMT has strong affinity to the photoelectrons produced by TiO2. In the last part, the performance of solid-state dye sensitized solar cell (SSDSSC) with exMMT/TiO2 composite layers inserting at different location of TiO2 photoelectrode were investigated. The results showed that composites located on the top of porous TiO2 layer or dense TiO¬2 layer within TiO2 photoelectrode had higher Voc and longer τIMVS due to the increase of energy band gap ; whereas one layer of composites deposited on top of the FTO glass within TiO2 photoelectrode exhibited higher Jsc and shorter τIMPS. It could be deduced that electrons attracted by composites were easier to transport into FTO conducting glass. Therefore, the power conversion efficiency increased from 0.691 ± 0.035 % to 0.719 ± 0.046 %. Besides, electrochemical impedance spectroscopy (EIS) results showed that the impedance decreased under sunlight but increased in the dark, suggesting that composites could rectify the electrons. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:02:37Z (GMT). No. of bitstreams: 1 ntu-103-R01549025-1.pdf: 7165068 bytes, checksum: d20e419ecd499a080bbf537c91e43808 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 第 1 章 緒論 1
1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第 2 章 文獻回顧 5 2-1 蒙脫石介紹 5 2-1-1 蒙脫石簡介與背景 5 2-1-2 蒙脫石吸附胺基酸之性質 7 2-1-3 脫層蒙脫石 (exMMT) 8 2-1-4 無乳化劑乳化聚合法製備脫層蒙脫石 8 2-1-5 Mannich聚合法製備脫層蒙脫石 9 2-2 二氧化鈦介紹 11 2-2-1 二氧化鈦結構 11 2-2-2 奈米二氧化鈦的光催化特性 12 2-3 二氧化鈦與蒙脫石MMT複合材料介紹 15 2-4 染料敏化太陽能電池 18 2-4-1 染料敏化太陽能電池介紹 (Dye sensitized Solar Cell , DSSC) 18 2-4-2 染料敏化太陽能電池原理 18 2-4-3 固態染料敏化太陽能電池 ( Solid-State Dye sensitized Solar Cell,SSDSSC ) 20 2-4-4 固態染料敏化太陽能電池原理 21 2-4-5 染料敏化太陽能電池原件組成 23 2-5 太陽能相關測定 28 2-5-1 太陽光模擬光源 28 2-5-2 太陽能電池光電轉換效率的計算 29 2-5-3 交流阻抗 (AC-impedance) 分析原理 30 2-5-4 強度調制光電壓與光電流譜 (Intensity Modulated Photovoltage and Photocurrent Spectroscopy,IMVS/IMPS) 33 2-5-5 開環電壓衰退的瞬態 (open-circuit potential decay transients) 與電量收集(charge extraction) 之量測 35 第 3 章 實驗方法與設備 36 3-1 實驗藥品 36 3-2 實驗儀器設備 38 3-3 脫層蒙脫石與胺基酸之複合材料 (exMMT/amino acid)製備與儀器分析 39 3-3-1 exMMT製備 39 3-3-2 exMMT/amino acid 複合材料製備 40 3-3-3 exMMT/amino acid複合材料之分析 41 3-4 吸附胺基酸之脫層蒙脫石與二氧化鈦複合材料(exMMT/amino acid/TiO2)之製備與分析 43 3-4-1 exMMT/amino acid/TiO2複合材料製備 43 3-4-2 exMMT/amino acid/TiO2複合材料應用於亞甲基藍之光催化實驗分析 44 3-5 exMMT/TiO2複合材料應用於固態染料敏化太陽能電池之樣品製備與分析 46 3-5-1 導電玻璃之清洗 46 3-5-2 二氧化鈦緻密層 (dense layer) 製備 46 3-5-3 多孔性二氧化鈦鍍液製備 46 3-5-4 多孔性二氧化鈦薄膜 (porous layer) 製備 47 3-5-5 多孔性二氧化鈦薄膜吸附染料製備 47 3-5-6 電洞傳導層(Hole-transport material , HTM)製備 48 3-5-7 對電極製備 48 3-5-8 exMMT/TiO2複合材料添加於元件之製備 49 3-5-9 exMMT/TiO2複合材料應用於太陽能電池之相關儀器分析 51 第 4 章 結果與討論 53 4-1 脫層蒙脫石 (exMMT) 分析 53 4-1-1 熱重損失分析儀 (TGA)之分析 53 4-1-2 穿透式電子顯微鏡之型態分析 55 4-2 脫層蒙脫石 (exMMT) 與胺基酸吸附分析 57 4-2-1 熱重損失分析儀 (TGA) 之分析 58 4-2-2 傅立葉轉換紅外線光譜 (FT-IR) 之分析 73 4-3 吸附胺基酸之exMMT與二氧化鈦複合材料(exMMT/amino acid/TiO2)分析 79 4-3-1 穿透式電子顯微鏡 (TEM) 之型態分析 79 4-3-2 紫外光-可見光光譜儀 (UV-vis)分析 85 4-3-3 螢光光譜儀 (PL) 分析 97 4-4 固態染料敏化太陽能電池應用分析 109 4-4-1 複合材料添加於元件之型態分析 109 4-4-2 光電轉換效率分析 115 4-4-3 交流阻抗分析 124 4-4-4 IMPS/IMVS 分析 137 4-4-5 電壓衰退與電量分析 143 第 5 章 結論 151 第 6 章 參考文獻 153 | |
dc.language.iso | zh-TW | |
dc.title | 脫層蒙脫石與二氧化鈦奈米複合材料之研製及其在固態染料敏化太陽能電池之應用 | zh_TW |
dc.title | Fabrication and Characterization of Exfoliated Montmorillonite/Titanium Dioxide Nanocomposites and Their Application on Solid-State Dye Sensitized Solar Cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川,邱文英 | |
dc.subject.keyword | 蒙脫石,二氧化鈦,複合材料,光催化,固態染料敏化太陽能電池, | zh_TW |
dc.subject.keyword | Mortmorillonite,TiO2,composite,photocatalysis,SSDSSC, | en |
dc.relation.page | 160 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-09-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。