Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠
dc.contributor.authorChih-Wei Linen
dc.contributor.author林志偉zh_TW
dc.date.accessioned2021-06-08T01:02:34Z-
dc.date.copyright2014-10-01
dc.date.issued2014
dc.date.submitted2014-09-29
dc.identifier.citation1. Moon R (2012) Transforming Glycoscience: A Roadmap for the Future.
2. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, & Dwek RA (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343(6166):1235681.
3. Degroote S, Wolthoorn J, & van Meer G (2004) The cell biology of glycosphingolipids. Seminars in Cell & Developmental Biology 15(4):375-387.
4. Regina Todeschini A & Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780(3):421-433.
5. Lingwood CA (2011) Glycosphingolipid functions. Cold Spring Harbor perspectives in biology 3(7).
6. Zhang X & Kiechle FL (2004) Glycosphingolipids in Health and Disease. Annals of Clinical & Laboratory Science 34(1):3-13.
7. Lairson LL, Henrissat B, Davies GJ, & Withers SG (2008) Glycosyltransferases: Structures, Functions, and Mechanisms. Annual Review of Biochemistry 77(1):521-555.
8. Ohtsubo K & Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855-867.
9. van Kooyk Y & Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593-601.
10. Arnold JN, Wormald MR, Sim RB, Rudd PM, & Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21-50.
11. Amon R, Reuven EM, Leviatan Ben-Arye S, & Padler-Karavani V (2014) Glycans in immune recognition and response. Carbohydrate Research 389(0):115-122.
12. Varki A (2009) Essentials of glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) 2nd Ed pp xxix, 784 p.
13. Hennet T (2012) Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochimica et Biophysica Acta (BBA) - General Subjects 1820(9):1306-1317.
14. Turner GA (1992) N-glycosylation of serum proteins in disease and its investigation using lectins. Clinica chimica acta; international journal of clinical chemistry 208(3):149-171.
15. Saussez S, et al. (1998) Quantitative glycohistochemistry defines new prognostic markers for cancers of the oral cavity. Cancer 82(2):252-260.
16. Dube DH & Bertozzi CR (2005) Glycans in cancer and inflammation [mdash] potential for therapeutics and diagnostics. Nat Rev Drug Discov 4(6):477-488.
17. Yagel S, et al. (1989) Evidence that β1-6 branched Asn-linked oligosaccharides on metastatic tumor cells facilitate invasion of basement membranes. International Journal of Cancer 44(4):685-690.
18. Liang Y-J, et al. (2010) Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proceedings of the National Academy of Sciences.
19. Liu Y-C, et al. (2011) Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proceedings of the National Academy of Sciences 108(28):11332-11337.
20. Heimburg-Molinaro J, et al. (2011) Cancer vaccines and carbohydrate epitopes. Vaccine 29(48):8802-8826.
21. Astronomo RD & Burton DR (2010) Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 9(4):308-324.
22. Slovin SF, Keding SJ, & Ragupathi G (2005) Carbohydrate vaccines as immunotherapy for cancer. Immunol Cell Biol 83(4):418-428.
23. Durrant LG, Noble P, & Spendlove I (2012) Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clinical and experimental immunology 167(2):206-215.
24. Pochechueva T, Jacob F, Fedier A, & Heinzelmann-Schwarz V (2012) Tumor-Associated Glycans and Their Role in Gynecological Cancers: Accelerating Translational Research by Novel High-Throughput Approaches. Metabolites 2(4):913-939.
25. Saito S, et al. (2003) Human α2, 3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. Journal of Biological Chemistry 278(29):26474-26479.
26. Noto Z, et al. (2013) CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral oncology 49(8):787-795.
27. Gottschling S, et al. (2013) Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis. European Respiratory Journal 41(3):656-663.
28. Ye F, et al. (2010) Stage-Specific Embryonic Antigen 4 Expression in Epithelial Ovarian Carcinoma. International Journal of Gynecological Cancer 20(6):958-964 910.1111/IGC.1110b1013e3181e1116fee1111.
29. 488- FCCwswμAF, et al. (2014) Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proceedings of the National Academy of Sciences 111(7):2482-2487.
30. Hung T-C, Lin C-W, Hsu T-L, Wu C-Y, & Wong C-H (2013) Investigation of SSEA-4 Binding Protein in Breast Cancer Cells. Journal of the American Chemical Society 135(16):5934-5937.
31. Kannagi R, et al. (1983) New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. Journal of Biological Chemistry 258(14):8934-8942.
32. Canevari S, Fossati G, Balsari A, Sonnino S, & Colnaghi MI (1983) Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr1) which specifically binds to human mammary epithelial cells. Cancer research 43(3):1301.
33. Bremer E, et al. (1984) Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. Journal of Biological Chemistry 259(23):14773.
34. Zhang S, et al. (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. International Journal of Cancer 73(1):42-49.
35. Zhang S, et al. (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. International Journal of Cancer 73(1):50-56.
36. Martignone S, et al. (1989) Relationship between CaMBr1 expression and tumor progression in small cell lung carcinomas. Tumori 75(4):373-377.
37. Gilewski T, et al. (2001) Immunization of metastatic breast cancer patients with a fully synthetic Globo H conjugate: a phase I trial. Proceedings of the National Academy of Sciences of the United States of America 98(6):3270.
38. Huang C, et al. (2006) Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proceedings of the National Academy of Sciences of the United States of America 103(1):15.
39. Wang C-C, et al. (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proceedings of the National Academy of Sciences 105(33):11661-11666.
40. Chang W, et al. (2008) Expression of Globo H and SSEA-3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proceedings of the National Academy of Sciences 105(33):11667.
41. Slovin SF, et al. (2005) A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer: a study of glycosylated MUC-2-KLH and Globo H-KLH conjugate vaccines given with the new semi-synthetic saponin immunological adjuvant GPI-0100 OR QS-21. Vaccine 23(24):3114-3122.
42. Huang Y-L, et al. (2013) Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proceedings of the National Academy of Sciences.
43. Tsai Y, Huang J, Cheng J, Lin J, & Hung J (2013) A Prevalent Cancer Associated Glycan, Globo H Ceramide, Induces Immunosuppression by Reducing Notch1 Signaling. J Cancer Sci Ther 5:264-270.
44. Kannagi R, et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2(12):2355-2361.
45. Zhou D, Henion TR, Jungalwala FB, Berger EG, & Hennet T (2000) The β1,3-Galactosyltransferase β3GalT-V Is a Stage-specific Embryonic Antigen-3 (SSEA-3) Synthase. Journal of Biological Chemistry 275(30):22631-22634.
46. Brimble SN, et al. (2007) The Cell Surface Glycosphingolipids SSEA-3 and SSEA-4 Are Not Essential for Human ESC Pluripotency. STEM CELLS 25(1):54-62.
47. Suzuki Y, et al. (2013) SSEA-3 as a novel amplifying cancer cell surface marker in colorectal cancers. International journal of oncology 42(1):161-167.
48. Sliwkowski MX & Mellman I (2013) Antibody therapeutics in cancer. Science 341(6151):1192-1198.
49. Weiner Louis M, Murray Joseph C, & Shuptrine Casey W (2012) Antibody-Based Immunotherapy of Cancer. Cell 148(6):1081-1084.
50. Reichert JM (2013) Antibodies to watch in 2013: Mid-year update. MAbs, (Landes Bioscience), pp 0--1.
51. Scott AM, Allison JP, & Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer immunity 12:14.
52. Mitri Z, Constantine T, & O'Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemotherapy research and practice 2012.
53. Liang P-H, Wang S-K, & Wong C-H (2007) Quantitative Analysis of Carbohydrate−Protein Interactions Using Glycan Microarrays:  Determination of Surface and Solution Dissociation Constants. Journal of the American Chemical Society 129(36):11177-11184.
54. Van Slambrouck S & Steelant WFA (2007) Clustering of monosialyl-Gb5 initiates downstream signalling events leading to invasion of MCF-7 breast cancer cells. Biochemical Journal 401(Pt 3):689.
55. Lefranc M-P (2001) IMGT, the international ImMunoGeneTics database. Nucl. Acids Res. 29(1):207-209.
56. Hakomori S (2002) The glycosynapse. Proceedings of the National Academy of Sciences 99(1):225.
57. Rabinovich Gabriel A & Croci Diego O (2012) Regulatory Circuits Mediated by Lectin-Glycan Interactions in Autoimmunity and Cancer. Immunity 36(3):322-335.
58. Munro J, et al. (1992) Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. The American journal of pathology 141(6):1397.
59. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22(2):108-112.
60. Powers C, McLeskey S, & Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocrine-related cancer 7(3):165-197.
61. Colca JR & Harrigan GG (2004) Photo-affinity labeling strategies in identifying the protein ligands of bioactive small molecules: examples of targeted synthesis of drug analog photoprobes. Combinatorial chemistry & high throughput screening 7(7):699-704.
62. Zhu H, et al. (2001) Global analysis of protein activities using proteome chips. science 293(5537):2101-2105.
63. Kang J, et al. (2009) Artemin is oncogenic for human mammary carcinoma cells. Oncogene 28(19):2034-2045.
64. Bespalov MM, et al. (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192(1):153-169.
65. Ceyhan GO, et al. (2006) The neurotrophic factor artemin promotes pancreatic cancer invasion. Annals of surgery 244(2):274-281.
66. Đevenica D, Čulić VČ, Vuica A, & Markotić A (2011) Biochemical, pathological and oncological relevance of Gb3Cer receptor. Medical oncology 28(1):675-684.
67. Johansson D, et al. (2009) Expression of verotoxin-1 receptor Gb3 in breast cancer tissue and verotoxin-1 signal transduction to apoptosis. BMC cancer 9(1):67.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18385-
dc.description.abstract異常的醣化是癌症的一個特徵。癌細胞其中一個的特點就是細胞表面具異常化的醣脂質,尤其是唾液酸化以及岩藻醣化。SSEA-4長期使用於胚胎幹細胞表面的標記,近來研究指出,在癌症研究中,SSEA-4和相似結構的Globo H和SSEA-3也被發現大量表現於癌細胞上。在這篇論文中,我們建立單株抗體來辨認SSEA-4 (MC45, MC46 and MC48)或同時辨認SSEA-4及Globo H和SSEA-3 (MC607)的抗體。我們並探討這些SSEA-4抗體之特性,並利用這些SSEA-4抗體來做癌細胞治療評估。首先,我們發現SSEA-4皆有表現在胰臟癌細胞。 MC48單株抗體對於SSEA-4表面解離常數約0.46 nM。在細胞實驗顯示,MC48抗體能夠結合於SSES-4抗原表現的胰臟癌細胞與組織,也可藉由細胞毒殺作用在殺死胰臟癌細胞。而在裸鼠動物實驗模式,顯示可抑制胰臟腫瘤的生長。將MC48轉換為嵌合單株抗體chimeric mAb (chi48)來做功能性的探討,chi48 antibody也可藉由補體的細胞毒殺實驗來殺死胰臟癌細胞株BxPC3。因此,本篇研究顯示SSEA-4的抗體具有發展於標靶治療的潛力,可應用於胰臟癌或其他帶有SSEA-4表現的腫瘤上。
另外針對Globo H的結合蛋白尚未報導,明確功能性也仍未被描述。利用蛋白質晶片、ELISA等方法,可初步發現一些Globo H 結合蛋白,利用醣晶片進一步發現Artemin蛋白可與Globo H有作用,而其Artemin/Globo H的相互作用也將探討於此篇論文中。
zh_TW
dc.description.abstractAberrant glycolipids, especially the sialylated and fucosylated ones, give the most characteristic patterns of cancers. SSEA-4 (Stage-specific embryonic antigen-4), a sialyl-glycolipid, has long been used as a cell surface marker for pluripotent human embryonic stem cells. In cancer research, SSEA-4 and relative structure Globo H and SSEA-3 (Stage-specific embryonic antigen-3) also found in many cancer cells. In this thesis, we were developing antibodies against SSEA-4 for target validation study. We found SSEA-4 was expressed on pancreatic cancer cells and specimens. From mice immunized with a SSEA-4 synthetic conjugate, two IgG1 (MC45, MC48) and one IgM (MC46) monoclonal antibody were derived that recognizes the SSEA-4 structure. MC48 mAbs were calculated surface dissociation (KD) constant amount to 0.46 nM for SSEA-4 in glycan array assay. We have showed MC48 that is capable of binding to SSES-4 antigen expressed on pancreatic cancer cells and human pancreatic cancer tissue. The MC48 antibody also mediates complement-dependent cytotoxicity in pancreatic cancer cells and it also significantly inhibits pancreatic tumor growth in nude mice. Besides, MC48 convert to human IgG1, the chimeric antibody chi48 also showed that CDC in pancreatic cancer cells. The present studies indicated SSEA-4 mAbs could be explored as an immunotherapy in the treatment of pancreatic cancer patient.
To investigate the glycan binding proteins for glycolipid, we used human protein microarray with biotinylated Globo H glycan epitope (Globo H-biotin). Then the glycan-binding protein candidates of human protein microarray were further analyzed by ELISA and glycan microarray. The Artemin/Globo H interaction was also investigated in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:02:34Z (GMT). No. of bitstreams: 1
ntu-103-D97642008-1.pdf: 7729555 bytes, checksum: 2725fe5a809ee7a88cf2026d41fbdce1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of Contents
誌謝 ii
摘要 iii
Abstract iv
Abbreviation vi
Table of Contents viii
CHAPTER 1 1
Introduction to Glycobiology 1
1.1 Definition of carbohydrate, glycan, saccharide, or sugar 1
1.2 Major classes of glycoconjugates and glycans 2
1.2.1 N-Linked glycosylation 4
1.2.2 O-Linked glycosylation 5
1.2.3 Proteoglycan, glycosaminoglycans (GAGs) 6
1.2.4 Glycolipid 7
1.3 Glycosyltransferases and glycan-processing Enzymes 9
1.4 Biological roles of glycans 10
1.5 Diseases of glycosylation 13
1.6 Glycolipids as targets for tumor immunotherapy 17
1.6.1 Stage-specific embryonic antigen 4 (SSEA 4) 18
1.6.2 Globo H 22
1.6.3 Stage-specific embryonic antigen-3 (SSEA-3) 25
1.7 Mechanisms of tumour cell killing by antibodies 28
1.8 Purpose in this thesis 31
CHAPTER 2 33
Developing antibodies for SSEA-4: . 33
2.1 Specific Aim 33
2.2 Results and discussion 33
2.2.1 Flow cytometric analysis of globo-series glycan on pancreatic cancer cell lines 34
2.2.2 Generation and characterization of SSEA-4 antibodies 36
2.2.3 Determination of the surface dissociation constant of SSEA-4 mAbs 41
2.2.4 SSEA-4 antibodies mediates complement-dependent cytotoxicity against pancreatic cancer cell Lines 42
2.2.5 mAb MC48 specifically recognizes pancreatic cancer cells and tissues 43
2.2.6 Growth inhibition of pancreatic cancer in nude mice by anti-SSEA-4 antibody 45
2.2.7 Isolation, construction, expression of chimeric antibody (chi48) from hybridoma 47
2.2.8 Chimeric antibody (chi48) mediates complement-dependent cytotoxicity against BxPC3 pancreatic cancer cell Lines 48
2.3 Conclusion 49
2.4 Materials and methods 51
CHAPTER 3 57
Investigation the binding protein for Globo H: 57
3.1 Specific Aim 57
3.2 Results and discussion 33
3.2.1 Synthesis of Globo H conjugated biotin 62
3.2.2 The affinity capture of Globo H‐binding proteins using protein array 62
3.2.3 Binding analysis of Globo H binding protein in ELISA plate and glycan array 64
3.2.4 Determination of the surface dissociation constant of Artemin for GH 66
3.2.5 Expression Profiles of GH-Related Structures in Breast Cancer Cells 67
3.2.6 Effect of forced expression of Artemin on mammary carcinoma cell MCF-7 and MDA-MB-231 68
3.3 Conclusion 70
3.4 Materials and methods 72
References 75
 

Content of Figures
Figure 1.1. Definition of carbohydrate, glycan, saccharide, or sugar 1
Figure 1.2. Nine common monosaccharides found in vertebrate. 3
Figure 1.3. Major classes of glycoconjugates in vertebrate 3
Figure 1.4. The three major types of glycans 5
Figure 1.5. The major structure of glycosaminoglycans(GAGs) 7
Figure 1.6. Mammalian glycan linkages produced by glycosylation 10
Figure 1.7. Biological roles of glycans 12
Figure 1.8. Summary of tumor-associated carbohydrates in human. 16
Figure 1.9. Structure of SSEA-4, SSEA-3 and Globo H 18
Figure 1.10. Expression of globo-series GSLs in cancer cell lines 20
Figure 1.11. The glycan binding profile from SSEA-4 immunized mice 21
Figure 1.12. FKBP4 were mediated SSEA-4 trafficking in breast cancer cell 22
Figure 1.13. The glycan binding profile from Globo H immunized mice 24
Figure 1.14. Monoclonal antibodies currently FDA approved in oncology 29
Figure 1.15. Mechanisms of tumor cell killing by antibodies 30
Figure 2.1. Expression profiles of globo-series GSL epitopes in pancreatic cancer cell lines 35
Figure 2.2. The induced antibodies (IgG) collected from SSEA-4 immunized mice 36
Figure 2.3. The binding of mAb MC45, MC48 to SSEA-4 and its analogue on glycan array 38
Figure 2.4. The binding of mAb MC46 to SSEA-4 and its analogue on glycan array…………………………………………………………………………….…...36
Figure 2.5. Representative glycan structures on the printed array 39
Figure 2.6. The binding of mAb MC45, MC46 and MC48 to SSEA-4 on toal glycan array 40
Figure 2.7. Surface dissociation constants (KD,surf) of antibodies MC45, MC48 to SSEA-4. on microarray 41
Figure 2.8. SSEA-4 antibodies mediated Complement-Dependent Cytotoxicity of pancreatic cancer cells 42
Figure 2.9. Validation of SSEA-4 expression on cancer cell lines by MC48 Ab 44
Figure 2.10. Growth inhibition of pancreatic cancer in nude mice by anti SSEA-4 antibodies 46
Figure 2.11. Construction of human IgG1 expression 47
Figure 2.12. CDC assay using chimeric Ab (chi48) on pancreatic cancer cell BxPC3 48
Figure 3.1. Protein list of human protein microarray 60
Figure 3.2. Detection of protein-protein or protein-small molecular interaction using protein microarray 61
Figure 3.3. Synthesis of Globo H conjugated biotin. 62
Figure 3.4. The affinity capture of Globo H‐binding proteins on protein array………………………………………………………………………………....63
Figure 3.5. Globo H‐binding proteins detected on ELISA platform 64
Figure 3.6. Binding profiling of Artemin (ART) for Globo H analogues on glycan microarray 66
Figure 3.7. Determination of the surface dissociation constant of ART toward Globo H analogues on glycan array 67
Figure 3.8. Expression Profiles of GH-Related Structures in Breast Cancer Cells 68
Figure 3.9. Constriction of pCMV-Taq 4a-ARTN 67
Figure 3.10. Expression profiles of GH-related structures in breast cancer MCF-7 (a) Cells MDA-231(b) which transient expressed Artemin 69

 
dc.language.isoen
dc.titleSSEA-4抗體的開發與應用於胰臟癌之研究zh_TW
dc.titleDevelopment of anti SSEA-4 antibodies for
targeting pancreatic cancer cells
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳宗益,沈家寧,蕭宏昇,吳漢忠,林劭品
dc.subject.keywordSSEA-4,Globo H,SSEA-3,單株抗體,胰臟癌,醣類結合蛋白,蛋白質晶片,醣晶片,Artemin,zh_TW
dc.subject.keywordglycolipid,SSEA-4,Globo H,SSEA-3,monoclonal antibody,pancreatic cancer,immunotherapy,glycan-binding protein,protein microarray,Artemin,en
dc.relation.page79
dc.rights.note未授權
dc.date.accepted2014-09-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
7.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved