請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18383
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳倩瑜(chien-yu chen) | |
dc.contributor.author | yu-shing lai | en |
dc.contributor.author | 賴昱行 | zh_TW |
dc.date.accessioned | 2021-06-08T01:02:28Z | - |
dc.date.copyright | 2014-10-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-09-30 | |
dc.identifier.citation | Ansorge, W.J., 2009. Next-generation DNA sequencing techniques. New biotechnology 25, 195-203.
Bohnert, R., Ratsch, G., 2010. rQuant.web: a tool for RNA-Seq-based transcript quantitation. Nucleic Acids Res 38, W348-W351. Bradford, J.R., Hey, Y., Yates, T., Li, Y.Y., Pepper, S.D., Miller, C.J., 2010. A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. Bmc Genomics 11. Fu, X., Fu, N., Guo, S., Yan, Z., Xu, Y., Hu, H., Menzel, C., Chen, W., Li, Y.X., Zeng, R., Khaitovich, P., 2009. Estimating accuracy of RNA-Seq and microarrays with proteomics. Bmc Genomics 10. Hansen, K.D., Brenner, S.E., Dudoit, S., 2010. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38. Holt, R.A., Jones, S.J.M., 2008. The new paradigm of flow cell sequencing. Genome Res 18, 839-846. Karolchik, D., Barber, G.P., Casper, J., Clawson, H., Cline, M.S., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M., Harte, R.A., Heitner, S., Hinrichs, A.S., Learned, K., Lee, B.T., Li, C.H., Raney, B.J., Rhead, B., Rosenbloom, K.R., Sloan, C.A., Speir, M.L., Zweig, A.S., Haussler, D., Kuhn, R.M., Kent, W.J., 2014. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res 42, D764-D770. Kerr, G., Ruskin, H.J., Crane, M., Doolan, P., 2008. Techniques for clustering gene expression data. Comput Biol Med 38, 283-293. Kerr, M.K., Churchill, G.A., 2007. Statistical design and the analysis of gene expression microarray data (Reprinted from Genet. Res., Camb., vol 77, pg 123-128, 2001). Genet Res 89, 509-514. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-U354. Leimena, M.M., Wels, M., Bongers, R.S., Smid, E.J., Zoetendal, E.G., Kleerebezem, M., 2012. Comparative Analysis of Lactobacillus plantarum WCFS1 Transcriptomes by Using DNA Microarray and Next-Generation Sequencing Technologies. Appl Environ Microb 78, 4141-4148. Mardis, E.R., 2008a. Next-generation DNA sequencing methods. Annual review of genomics and human genetics 9, 387-402. Mardis, E.R., 2008b. Next-generation DNA sequencing methods. Annu Rev Genom Hum G 9, 387-402. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y., 2008. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18, 1509-1517. Metzker, M.L., 2010. Applications of Next-Generation Sequencing Sequencing Technologies - the Next Generation. Nat Rev Genet 11, 31-46. Mortazavi, A., Williams, B.A., Mccue, K., Schaeffer, L., Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621-628. Okoniewski, M.J., Miller, C.J., 2006. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. Bmc Bioinformatics 7. Passador-Gurgel, G., Hsieh, W.P., Hunt, P., Deighton, N., Gibson, G., 2007. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat Genet 39, 264-268. Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt, B.E., Nkadori, E., Veyrieras, J.B., Stephens, M., Gilad, Y., Pritchard, J.K., 2010. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768-772. Richard, H., Schulz, M.H., Sultan, M., Nurnberger, A., Schrinner, S., Balzereit, D., Dagand, E., Rasche, A., Lehrach, H., Vingron, M., Haas, S.A., Yaspo, M.L., 2010. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res 38. Roberts, A., Pachter, L., 2013. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10, 71-U99. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., Pachter, L., 2011. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12. Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S.D., Mungall, K., Lee, S., Okada, H.M., Qian, J.Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y.S., Newsome, R., Chan, S.K., She, R., Varhol, R., Kamoh, B., Prabhu, A.L., Tam, A., Zhao, Y.J., Moore, R.A., Hirst, M., Marra, M.A., Jones, S.J.M., Hoodless, P.A., Birol, I., 2010. De novo assembly and analysis of RNA-seq data. Nat Methods 7, 909-U962. Shendure, J., Ji, H., 2008. Next-generation DNA sequencing. Nature biotechnology 26, 1135-1145. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L., 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511-U174. Voelkerding, K.V., Dames, S.A., Durtschi, J.D., 2009. Next-generation sequencing: from basic research to diagnostics. Clinical chemistry 55, 641-658. Wang, Z., Gerstein, M., Snyder, M., 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57-63. Wilusz, J.E., Sharp, P.A., 2013. Molecular biology. A circuitous route to noncoding RNA. Science 340, 440-441. Yang, L., Duff, M.O., Graveley, B.R., Carmichael, G.G., Chen, L.L., 2011. Genomewide characterization of non-polyadenylated RNAs. Genome biology 12, R16. Zhang, Z., Theurkauf, W.E., Weng, Z., Zamore, P.D., 2012. Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. Silence 3, 9. Zheng, W., Chung, L.M., Zhao, H.Y., 2011. Bias detection and correction in RNA-Sequencing data. Bmc Bioinformatics 12. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18383 | - |
dc.description.abstract | 近年來RNA定序(RNA-sequencing)已經成為量測基因表現量的重要技術,然而,現有定序技術存在幾種偏差(bias),這些偏差導致轉錄序列所產生的定序讀段 (read) 在轉錄序列上的分布並非是均勻分布的 (uniform distribution),這會導致轉錄序列的某些轉錄序列區段(region)存在的定序讀段量較高,某些區段較低。此類由於定序技術偏差而造成轉錄序列區段上讀段分布不均的現象,可能大大影響轉錄序列定量的準確性,進而影響基因表現量差異分析的結果。為此,本研究比較五種量度基因表現差異的方法,其中包含以全長轉錄序列(full-length)量度表現差異的方法和以轉錄序列區段(segment-based)量度表現差異的方法,其結果顯示,其中一種以轉錄序列區段計算表現量差異的方法SRA較傳統上以全長轉錄序列計算表現量差異的方法好,尤其是在轉錄序列表現量很低的時候,其定量準確性相對高出很多。因此本研究最後建議,RNA定序的使用者將來若希望將低表現量的基因納入計算的話,可以考慮使用以轉錄序列區段的定量方式(SRA)進行基因表現差異的量測。 | zh_TW |
dc.description.abstract | RNA sequencing (RNA-seq) technology is an essential tool for investigating transcript (gene) expression and has been widely suggested by many recent studies. However, several potential biases result in the situation that the read sampling is not uniformly distributed in different regions of a transcript. Such position biases might largely affect the accuracy of quantification methods in correctly estimating transcript (gene) expression, and thus is a critical issue to tackle in differential expression analysis of RNA-seq data. In this study, five quantification methods of producing transcript differential scores across two experimental conditions are presented and compared. Differential scores across two experiments were constructed using the full-length transcripts and the segments of each single transcript, respectively. Results revealed that the segment-based method, SRA, can report more consistent transcript differential scores with the estimated scores from microarrays than the full-length approach, especially when the transcript (gene) expression is low. The analyses conducted in this study suggested the RNA-seq users to employ the differential scores integrated from multiple segments for discovering differential genes, especially when the transcript (gene) expression is considerably low. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:02:28Z (GMT). No. of bitstreams: 1 ntu-103-R01631008-1.pdf: 3003437 bytes, checksum: bb7128235f11f267056a5d39163d63ff (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 前言 1 第二章 研究目的 4 第三章 文獻探討 6 3.1微陣列晶片 6 3.2次世代定序 6 3.2.1 Illumina定序技術 7 3.2.2 RNA定序 7 3.2.3 單端定序讀段與雙端定序讀段 9 3.2.4 鏈特異性RNA定序 9 3.3 定序讀段回貼工具 10 3.4 轉錄序列定量 12 第四章 材料與方法 14 4.1 RNA定序與微陣列晶片 14 4.2 參考序列組 15 4.3 序列回貼及表現量定量 16 4.4 五種定義表現量差異的方法 16 4.5 驗證五種方法之優劣 19 4.6 不同區段長度表現量差異探討 19 4.7 含有探針序列區段對於微陣列相關性探討 20 4.8 qPCR驗證 20 第五章 結果與討論 21 5.1 定序讀段前處理 21 5.2 轉錄序列區段多樣性 23 5.3 五種表現量差異方法比較 25 5.3.1探討在平台之間表現量差異值不一致的原因 26 5.4 消除RNA定序低表現量影響 29 5.4.1 提高FPKM或PRKM的閥值 29 5.4.2 提高區段對 (segment pair) 數目 31 5.4.3 使用人類資料進行方法的比較 36 5.5 轉錄序列表現量高低的影響 39 5.6 區段多樣性的影響 43 5.7 不同區段長度影響 46 5.8 含有探針序列的區段對於微陣列相關係數之影響 47 5.9 qPCR結果驗證 47 第六章 結論 50 文獻 52 附錄1 程式化腳本 55 附錄2 各分析流程檔案程式碼 70 附錄3 total-seq重複性高的定序讀段 130 | |
dc.language.iso | zh-TW | |
dc.title | 利用多序列區段增進轉錄體定序資料之
差異表現分析的可靠性 | zh_TW |
dc.title | Segment-based quantification of differential expression in RNA-seq data | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉力瑜(Li-yu D Liu),吳君泰(June-Tai Wu),許如君(Hsu, J. C) | |
dc.subject.keyword | 次世代定序,區段表現量差異,低表現量, | zh_TW |
dc.subject.keyword | next generation sequencing,segment-based differential expression,low transcript (gene) expression, | en |
dc.relation.page | 133 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-10-01 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。