請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃信富(Hsin-Fu Huang) | |
| dc.contributor.author | Sheng-Han Lee | en |
| dc.contributor.author | 李昇翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:01:57Z | - |
| dc.date.copyright | 2014-10-28 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-10-17 | |
| dc.identifier.citation | [1] R. M. Radwan, I. A. Metwally, R. M. El-Dewieny, Investigation of static electrification phenomenon due to transformer oil flow in electric power apparatus, IEEE Transactions on Electrical Insulation Vol.27 No.2, (1992) 278-286.
[2] T. J. Harvey, R. J. K. Wood, G. Denualt, H. E. G. Powrie, Effect of oil quality on electrostatic charge generation and transport, Journal of Electrostatic 55 (2002) 1-23. [3] T. J. Harvey, R. J. K. Wood, G. Denualt, H. E. G. Powrie, Investigation of electrostatic charging mechanisms in oil lubricated tribo-contacts , Journal of electrostatic 35 (2002) 605-614. [4] J. Kedzia, Investigation of Transformer Oil Electrification in a Spinning Disk System, IEEE Transactions on Electrical Insulation , Vol.24 No.1,(1989) 59-66. [5] Y. Bouslimi, I. Fofana, H. Hemmatjou, C. Volat, Static Electrification Assessment of Transformer Oils in the spinning Disc System, International Conference on High Voltage Engineering and Application, New Orleans, LA, (2010) 337-340. [6] D. Zmarzly, T. Boczar, Measurements of Distribution of Streaming Electrification Current Inside a Pipe, IEEE Transactions on Dielectrics and Electrical Insulation Vol.16, No.6, (2009) 1681-1685. [7] A. J. Morin II, M. Zahn, R. Melcher, Equilibrium electrification parameters inferred from coquette charger terminal measurement, 1988 Annual Report of the Conference on Electrical Insulation and Dielectric Phenomena, Ottawa, Canada, (1988) 286-292. [8] S. Ren, Q. Liu, L. Zhong, Q. Yu, Y. Xu, X. Cao, M. Hanai, S. Yamada, S. Mori, Electrostatic Charging Tendency and Correlation Analysis of Mineral Insulation Oils under Thermal Aging, IEEE Transactions on Dielectrics and Electrical Insulation Vol. 18, No. 2, (2008) 499-505. [9] M. Zdanowski, Influence of Composition of Dielectric Liquid Mixture on Electrostatic Charge Tendency and Physicochemical Parameter, IEEE Transactions on Dielectrics and Electrical Insulation Vol.15,No2, (2008) 527-532. [10] J. Kedzia, Electrostatic Properties of Aged Transformer Oil, IEEE Transactions on Electrical Insulation , Vol.24 No.2, (1989) 175-178. [11] M. Zdanowski, S. Wolny, D. Zmarzly, J. Kedzia, The Analysis and Selection of the Spinning Disk System Parameters for the Measurement of Static Electrification of Insulation Oils, IEEE Transactions on Dielectrics and Electrical Insulation Vol.14, No.5, (2007) 480-486. [12] I. Fofana, Y. Bouslimi, H. Hemmatjou, C. Volat, K. Tahiri, Relationship between static electrification of transformer oils with turbidity and spectrophotometry measurements , Electrical Power and Energy Systems 54 (2014) 38-44. [13] P. J. Sides, D. C. Prieve, Surface Conductivity and the Streaming Potential near a Rotating Disk-Shaped Sample, Langmuir 29 (2013) 13427-13432. [14] M. F. Manas, J. B. Schlenoff, Zeta Potential of Polyelectrolyte Multilayers Using the Spinning Disk Method, Langmuir 30 (2014) 8776-8783. [15] J. D. Hoggard, P. J. Sides, D. C. Prieve, Measurement of the Streaming Potential and Streaming Current near a Rotating Disk to Determine Its Zeta Potential, Langmuir 21 (2005) 7433-7438. [16] P. J. Sides, J. Newman, J. D. Hoggard, D. C. Prieve, Calculation of the Streaming Potential near a Rotating Disk, Langmuir 22 (2006) 9765-9769. [17] R. F. Probstein, Physicochemical Hydrodynamics, New York: John Wiley, 1994. [18] D. Zmarzly, Streaming Electrification Measurements in Swinging Cylinder System, IEEE Transactions on Dielectrics and Electrical Insulation Vol.19, No.5, (2012) 1665-1672. [19] J. Kedzia, B. Willner, Electrification Current in the Spinning Disk System , IEEE Transactions on Electrical Insulation , Vol.1 No.1, (1994) 58-62. [20] P. Mas, T. Paillat, G. Touchard, O. Moreau, Investigations in order to improve the E.C.T. measurement protocol of large power transformer oil, 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Victoria, BC, (2000) 65-68. [21] T. V. Oommen, E. M. Petrie, Electrostatic Charging Tendency of transformer oils, IEEE transaction on Power Apparatus and Systems, Vol.PAS-103, No.7, (1984) 1923-1931. [22] S. Okabe, M. Kotoh, M. Tsuchie, T. Amimoto, Mechanism of Influence of Electrostatic Charging Tendency in Insulating Oil for Oil-Immersed Transformer, Electrical Engineering in japan, Vol.176, No.4, (2011) 26-33. [23] S. Isaka, H. Miyao, M. Tsuchie, S. Kobayashi, T. Kobayasshi, T. Ono, M. Ikeda , H. Okubo, Investigation for Standardization of Electrostatic Charge Tendency Measurement of Transformer Oil in JAPAN, Proceedings of 13th International Conference on Dielectric Liquid (ICDL ’99), Nara, Japan , (1999) 495-498. [24] S. Okabe, M. Kohtoh, T. Amimoto, Investigation of Electrostatic Charging Mechanism in Aged Oil-Immersed Transformers, IEEE Transactions on Dielectrics and Electrical Insulation Vol.17, No.1, (2010) 287-293. [25] A. Kisza, The capacitance of the electric double layer of electrode in molten salts, Journal of Electroanalytical Chemistry 534 (2002) 99-106. [26] R. Parsons, Electrical Double Layer: Recent Experimental and Theoretical Developments, Chem Rev.90 (5)(1990) 813-826. [27] J. Kedzia, Electrostatic Properties of Aged Transformer Oil ,IEEE Transactions on Electrical Insulation , Vol.24 No.2, (1989) 175-178. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18372 | - |
| dc.description.abstract | 本研究利用旋轉圓盤系統實驗,觀測水溶液流動帶電情況之變化,並將所量測得到之結果進行一系列的討論與比較。在實驗當中,吾人調整旋轉圓盤系統內的參數條件,包括旋轉盤材質(鋁、銅、不銹鋼、壓克力)、旋轉速度(100rpm~600rpm)、旋轉盤尺寸半徑(1cm、1.5cm、2cm、4cm)、實驗流體容量(1600cc、2200cc),以及旋轉圓盤與法拉第量測容器之垂直間距(1.5cm、6.15cm),觀測改變各參數條件下,對於水溶液流動帶電所產生之電流有何種影響。由於固體表面與電解質溶液接觸時,固體透過表面解離,以及離子吸附等化學作用影響,將獲得表面電荷,在界面處自然地形成電雙層現象。因為電雙層存在,且旋轉圓盤轉動與水溶液發生相對運動,電雙層遭受一外力作用影響,進而改變電雙層平衡,使靠近旋轉圓盤表面的部分帶電離子,將被轉動中之圓盤離心力與持續流動之水溶液帶離表面而散布至整個溶液中。當增加旋轉盤旋轉速度時,相對運動也隨之更加劇烈,造成電雙層內更多的離子被帶入水溶液中,並藉由法拉第量測容器進行電流訊號之測量。當改變旋轉盤旋轉速度以及轉盤尺寸半徑大小時,將會影響流場之雷諾數。當旋轉圓盤流場之雷諾數約莫超過4000時,量測所得之電流隨雷諾數上升而下降,與前人文獻結果相似。而當改變旋轉盤材質時,因為材料之物理特性不同,造成圓盤上之表面電位差異,而呈現金屬類材質之轉盤轉動下,量測所得之電流明顯較大之情況。 | zh_TW |
| dc.description.abstract | By using the spinning disk system, we can observe the flow electrification in aqueous solutions. Experiments were performed by varying several system parameters such as radius of spinning disk (1cm、1.5cm、2cm、4cm), material of the spinning disk (aluminum、copper、stainless steel、acrylic), spinning angular velocity (100-600 rpm), the vertical distance between the spinning disk and the bottom of the Faraday measuring vessel (1.5cm、6.15cm), and the different volumes of working fluid (1600cc、2200cc). The influences of varying the different system parameters during flow electrification on the streaming current development performances were investigated, documented, and illustrated. The generation of charge was thought to occur when turning on the motor, which caused relative motion between the spinning disk and the aqueous solution. The relative motion between the spinning disk and the liquid strips off the electric charges within the electric double layer at the solid-liquid interface and thus generates free electrostatic charges in the bulk flow which were collected and measured. Results showed that the Reynolds number of the rotating disk flow field depended on several important parameters such as the radius of disk and the angular velocity of rotation. The current increased as the Reynolds number increased when the Reynolds number was roughly below 4000. As the Reynolds number exceeded 4000, the current decreased as the Reynolds number was further increased, which were results likely consistent with those reported in previous literature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:01:57Z (GMT). No. of bitstreams: 1 ntu-103-R01522121-1.pdf: 9043601 bytes, checksum: d44806be7d764be0b89e08dba80d2171 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii 英文摘要Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3研究動機與目的 4 第二章 實驗方法與步驟 5 2.1實驗儀器與設備 5 2.2實驗步驟 11 2.3實驗參數設計 13 第三章 結果討論與比較 17 3.1.旋轉角速度改變對摩擦產電效應之影響 17 3.2.旋轉盤尺寸對摩擦產電效應之影響 19 3.3.旋轉盤之材料對摩擦產電效應之影響 21 3.4.旋轉盤與法拉第量測容器底部之垂直間距對摩擦產電效應之影響22 3.5.水容量多寡對摩擦產電效應之影響 23 第四章 總結 25 4.1結論 25 4.2 未來展望 26 參考文獻 27 | |
| dc.language.iso | zh-TW | |
| dc.title | 以迴轉圓盤式靜電測定器量測水溶液流動帶電特性可行性之評估與探討 | zh_TW |
| dc.title | Assessment on the feasibility of measuring the
flow electrification characteristics of aqueous solutions using the rotating disk equipment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊馥菱(Fu-Ling Yang),高國傑(Guo-Jie Gao),曾建洲(Chien-Chou Tseng) | |
| dc.subject.keyword | 流動帶電,電雙層,旋轉圓盤系統,雷諾數, | zh_TW |
| dc.subject.keyword | flow electrification,electric double layer,spinning disk system,Reynolds number, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-10-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 8.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
