Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18336
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴美淑(Mei-Shu Lai)
dc.contributor.authorYen-Chieh Leeen
dc.contributor.author李彥潔zh_TW
dc.date.accessioned2021-06-08T01:00:19Z-
dc.date.copyright2015-03-12
dc.date.issued2014
dc.date.submitted2015-01-06
dc.identifier.citation1. Xu, J., et al., Parkinson's disease and risk of mortality: meta-analysis and systematic review. Acta Neurol Scand, 2014. 129(2): p. 71-9.
2. Mullin, S. and A.H. Schapira, Pathogenic Mechanisms of Neurodegeneration in Parkinson Disease. Neurol Clin, 2015. 33(1): p. 1-17.
3. Bosco, J.L.F., et al., A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. Journal of Clinical Epidemiology, 2010. 63(1): p. 64-74.
4. de Lau, L.M.L. and M.M.B. Breteler, Epidemiology of Parkinson's disease. The Lancet Neurology, 2006. 5(6): p. 525-535.
5. Chen, R.C., et al., Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology, 2001. 57(9): p. 1679-86.
6. Elbaz, A. and F. Moisan, Update in the epidemiology of Parkinson's disease. Curr Opin Neurol, 2008. 21(4): p. 454-60.
7. Connolly, B.S. and A.E. Lang, Pharmacological treatment of Parkinson disease: a review. JAMA, 2014. 311(16): p. 1670-83.
8. AlDakheel, A., L.V. Kalia, and A.E. Lang, Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics, 2014. 11(1): p. 6-23.
9. Mann, D., et al., Trends in statin use and low-density lipoprotein cholesterol levels among US adults: impact of the 2001 National Cholesterol Education Program guidelines. Ann Pharmacother, 2008. 42(9): p. 1208-15.
10. Becker, C. and C.R. Meier, Statins and the risk of Parkinson disease: an update on the controversy. Expert Opin Drug Saf, 2009. 8(3): p. 261-71.
11. Ghosh, A., et al., Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci, 2009. 29(43): p. 13543-56.
12. Forno, L.S., Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol, 1996. 55(3): p. 259-72.
13. Jenner, P., Oxidative stress and Parkinson's disease. Handb Clin Neurol, 2007. 83: p. 507-20.
14. Wolozin, B., et al., Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease. BMC Med, 2007. 5: p. 20.
15. Hippisley-Cox, J. and C. Coupland, Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database. BMJ, 2010. 340: p. c2197.
16. Huang, X., et al., Lower low-density lipoprotein cholesterol levels are associated with Parkinson's disease. Mov Disord, 2007. 22(3): p. 377-81.
17. Wahner, A.D., et al., Statin use and the risk of Parkinson disease. Neurology, 2008. 70(16 Pt 2): p. 1418-22.
18. Hu, G., et al., Total cholesterol and the risk of Parkinson disease. Neurology, 2008. 70(21): p. 1972-9.
19. Henchcliffe, C. and W.L. Severt, Disease modification in Parkinson's disease. Drugs Aging, 2011. 28(8): p. 605-15.
20. McDermott, M.P., et al., Design and analysis of two-period studies of potentially disease-modifying treatments. Control Clin Trials, 2002. 23(6): p. 635-49.
21. Samii, A., B.C. Carleton, and M. Etminan, Statin use and the risk of Parkinson disease: a nested case control study. J Clin Neurosci, 2008. 15(11): p. 1272-3.
22. Becker, C., S.S. Jick, and C.R. Meier, Use of statins and the risk of Parkinson's disease: a retrospective case-control study in the UK. Drug Saf, 2008. 31(5): p. 399-407.
23. Ritz, B., et al., Statin use and Parkinson's disease in Denmark. Mov Disord, 2010. 25(9): p. 1210-6.
24. de Lau, L.M., B.H. Stricker, and M.M. Breteler, Serum cholesterol, use of lipid-lowering drugs, and risk of Parkinson disease. Mov Disord, 2007. 22(13): p. 1985.
25. Gao, X., et al., Prospective study of statin use and risk of Parkinson disease. Arch Neurol, 2012. 69(3): p. 380-4.
26. Hu, G., et al., Type 2 diabetes and the risk of Parkinson's disease. Diabetes Care, 2007. 30(4): p. 842-7.
27. Qiu, C., et al., Association of blood pressure and hypertension with the risk of Parkinson disease: the National FINRISK Study. Hypertension, 2011. 57(6): p. 1094-100.
28. Chan, C.S., et al., 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature, 2007. 447(7148): p. 1081-6.
29. Wright, J.W. and J.W. Harding, Importance of the brain Angiotensin system in Parkinson's disease. Parkinsons Dis, 2012. 2012: p. 860923.
30. Munoz, A., et al., Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacology, 2006. 51(1): p. 112-20.
31. Paganini-Hill, A., Risk factors for parkinson's disease: the leisure world cohort study. Neuroepidemiology, 2001. 20(2): p. 118-24.
32. Ton, T.G., et al., Calcium channel blockers and beta-blockers in relation to Parkinson's disease. Parkinsonism Relat Disord, 2007. 13(3): p. 165-9.
33. Becker, C., S.S. Jick, and C.R. Meier, Use of antihypertensives and the risk of Parkinson disease. Neurology, 2008. 70(16 Pt 2): p. 1438-44.
34. Louis, E.D., J. Benito-Leon, and F. Bermejo-Pareja, Antihypertensive agents and risk of Parkinson's disease, essential tremor and dementia: a population-based prospective study (NEDICES). Neuroepidemiology, 2009. 33(3): p. 286-92.
35. Ritz, B., et al., L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol, 2010. 67(5): p. 600-6.
36. Simon, K.C., et al., Calcium channel blocker use and risk of Parkinson's disease. Mov Disord, 2010. 25(12): p. 1818-22.
37. Pasternak, B., et al., Use of calcium channel blockers and Parkinson's disease. Am J Epidemiol, 2012. 175(7): p. 627-35.
38. Brookhart, M.A., et al., Confounding control in healthcare database research: challenges and potential approaches. Med Care, 2010. 48(6 Suppl): p. S114-20.
39. Klungel, O.H., et al., Methods to assess intended effects of drug treatment in observational studies are reviewed. J Clin Epidemiol, 2004. 57(12): p. 1223-31.
40. McMahon, A.D., Approaches to combat with confounding by indication in observational studies of intended drug effects. Pharmacoepidemiol Drug Saf, 2003. 12(7): p. 551-8.
41. Brookhart, M.A., et al., Adherence to Lipid-lowering Therapy and the Use of Preventive Health Services: An Investigation of the Healthy User Effect. American Journal of Epidemiology, 2007. 166(3): p. 348-354.
42. Shrank, W.H., A.R. Patrick, and M.A. Brookhart, Healthy user and related biases in observational studies of preventive interventions: a primer for physicians. J Gen Intern Med, 2011. 26(5): p. 546-50.
43. Fedson, D.S., Pandemic influenza: a potential role for statins in treatment and prophylaxis. Clin Infect Dis, 2006. 43(2): p. 199-205.
44. Poynter, J.N., et al., Statins and the risk of colorectal cancer. N Engl J Med, 2005. 352(21): p. 2184-92.
45. Rockwood, K., et al., USe of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Archives of Neurology, 2002. 59(2): p. 223-227.
46. Wang, P.S., et al., HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA, 2000. 283(24): p. 3211-6.
47. Chan, K.A., et al., Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet, 2000. 355(9222): p. 2185-8.
48. Garbe, E., et al., Selection of controls in database case-control studies: glucocorticoids and the risk of glaucoma. J Clin Epidemiol, 1998. 51(2): p. 129-35.
49. Schneeweiss, S., et al., Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results. Med Care, 2007. 45(10 Supl 2): p. S131-42.
50. Psaty, B.M. and D.S. Siscovick, Minimizing bias due to confounding by indication in comparative effectiveness research: The importance of restriction. JAMA, 2010. 304(8): p. 897-898.
51. Perrio, M., P.C. Waller, and S.A. Shakir, An analysis of the exclusion criteria used in observational pharmacoepidemiological studies. Pharmacoepidemiol Drug Saf, 2007. 16(3): p. 329-36.
52. Glynn, R.J., et al., Paradoxical relations of drug treatment with mortality in older persons. Epidemiology, 2001. 12(6): p. 682-9.
53. Seeger, J.D., P.L. Williams, and A.M. Walker, An application of propensity score matching using claims data. Pharmacoepidemiology and Drug Safety, 2005. 14(7): p. 465-476.
54. Glynn, R.J., S. Schneeweiss, and T. Stürmer, Indications for Propensity Scores and Review of their Use in Pharmacoepidemiology. Basic & Clinical Pharmacology & Toxicology, 2006. 98(3): p. 253-259.
55. Arbogast, P.G. and W.A. Ray, Use of disease risk scores in pharmacoepidemiologic studies. Statistical Methods in Medical Research, 2009. 18(1): p. 67-80.
56. Miettinen, O.S., Stratification by a multivariate confounder score. Am J Epidemiol, 1976. 104(6): p. 609-20.
57. Pike, M.C., J. Anderson, and N. Day, Some insights into Miettinen's multivariate confounder score approach to case-control study analysis. Epidemiol Community Health, 1979. 33(1): p. 104-6.
58. Cook, E.F. and L. Goldman, Performance of tests of significance based on stratification by a multivariate confounder score or by a propensity score. J Clin Epidemiol, 1989. 42(4): p. 317-24.
59. Sturmer, T., et al., Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. Am J Epidemiol, 2005. 161(9): p. 891-8.
60. Sampling of Longitudinal Health Insurance Database(LHID). retrieved on Nov. 12, 2014.
61. Hernan, M.A., G. Logroscino, and L.A. Rodriguez, A prospective study of alcoholism and the risk of Parkinson's disease. J Neurol, 2004. 251 Suppl 7: p. vII14-7.
62. Schachter, M., Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol, 2005. 19(1): p. 117-25.
63. Stricker, B.H. and T. Stijnen, Analysis of individual drug use as a time-varying determinant of exposure in prospective population-based cohort studies. Eur J Epidemiol, 2010. 25(4): p. 245-51.
64. Neil-Dwyer, G., et al., Beta-adrenoceptor blockers and the blood-brian barrier. Br J Clin Pharmacol, 1981. 11(6): p. 549-53.
65. Hu, G., et al., Body mass index and the risk of Parkinson disease. Neurology, 2006. 67(11): p. 1955-9.
66. Jabir, N.R., et al., Synopsis on the Linkage of Alzheimer's and Parkinson's Disease with Chronic Diseases. CNS Neurosci Ther, 2014.
67. Selley, M.L., Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res, 2005. 1037(1-2): p. 1-6.
68. Hawkes, C.H., K. Del Tredici, and H. Braak, A timeline for Parkinson's disease. Parkinsonism Relat Disord, 2010. 16(2): p. 79-84.
69. Wang, Q., et al., Simvastatin reverses the downregulation of dopamine D1 and D2 receptor expression in the prefrontal cortex of 6-hydroxydopamine-induced Parkinsonian rats. Brain Res, 2005. 1045(1-2): p. 229-33.
70. Wang, Q., et al., High doses of simvastatin upregulate dopamine D1 and D2 receptor expression in the rat prefrontal cortex: possible involvement of endothelial nitric oxide synthase. Br J Pharmacol, 2005. 144(7): p. 933-9.
71. Marras, C., et al., Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann Neurol, 2012. 71(3): p. 362-9.
72. Surmeier, D.J., Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol, 2007. 6(10): p. 933-8.
73. Kupsch, A., et al., 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res, 1996. 741(1-2): p. 185-96.
74. Reardon, K.A., et al., The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson's disease. Aust N Z J Med, 2000. 30(1): p. 48-53.
75. Grammatopoulos, T.N., et al., Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener, 2007. 2: p. 1.
76. Garrido-Gil, P., et al., Involvement of PPAR-gamma in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease. J Neuroinflammation, 2012. 9: p. 38.
77. Zhang, P. and B. Tian, Metabolic syndrome: an important risk factor for Parkinson's disease. Oxid Med Cell Longev, 2014. 2014: p. 729194.
78. Karim, S., et al., Gene expression analysis approach to establish possible links between Parkinson's disease, cancer and cardiovascular diseases. CNS Neurol Disord Drug Targets, 2014. 13(8): p. 1334-45.
79. Kamal, M.A., Editorial: linkage of neurodegenerative disorders with other health issues - volume I. CNS Neurol Disord Drug Targets, 2014. 13(7): p. 1125-9.
80. Schernhammer, E., et al., Diabetes and the risk of developing Parkinson's disease in Denmark. Diabetes Care, 2011. 34(5): p. 1102-8.
81. Driver, J.A., et al., Use of non-steroidal anti-inflammatory drugs and risk of Parkinson's disease: nested case-control study. BMJ, 2011. 342: p. d198.
82. Wahlqvist, M.L., et al., Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson's disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord, 2012. 18(6): p. 753-8.
83. de Lau, L.M., et al., Serum cholesterol levels and the risk of Parkinson's disease. Am J Epidemiol, 2006. 164(10): p. 998-1002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18336-
dc.description.abstract巴金森氏症是老年常見之退化性疾病,其致病機轉多元而不明,牽涉基因,環境因素及兩者之間的交互作用;由於目前未有治療藥物能阻斷疾病進展、即多巴胺細胞死亡,有越來越多流行病學研究針對常見藥物使用,探討其對巴金森氏症發生的風險。
使用次級資料庫進行藥物療效與安全性評估日益普遍,亦為研究相關題材可貴及有效率的資源,但因為其觀察性質,缺乏臨床試驗隨機分配的特性,目前多數研究仍受到一些限制;大多數研究使用”未使用藥物者”(nonuser)當作對照組進行研究而未考慮藥物處方的適應症 (或禁忌症)常造成適應症干擾(confounding by indication),使用與未使用藥物者在疾病嚴重程度,就醫型態,生活習慣或疾病預後常有很大的差別,而這些差別多與所欲研究的結果(outcome)相關,且是在次級資料庫中無法測量且難以控制的,若藥物的適應症是研究疾病的危險因子之一或研究疾病正好是研究藥物的所欲療效,或者與欲探討疾病共享同一危險因子(如血壓、血脂),造成的誤差將更加嚴重。
本論文提出常見藥物使用與巴金森氏症之兩個研究,使用限制研究族群策略來選取研究對照組可以降低適應症干擾所造成的誤差,:第一個研究利用本國健保局對降血脂藥物給付中,達標即停藥的規定,研究開始使用降血脂藥物statin族群,用藥與停藥發生巴金森氏症的風險,本研究發現,相對於停藥,繼續使用親脂性降血脂藥物能降低巴金森氏病的發生風險達58%(HR:0.42, 95%C.I.:0.27–0.64),而親水性降血脂藥物則未有保護效果,而親脂性降血脂藥物使用並未發現有劑量累積效應;第二個研究限制於高血壓診斷病患,探討不同類型高血壓藥物與巴金森氏症發生的風險,本篇研究發現,在平均約4.6年的追蹤時間,相對於乙型阻斷劑的使用,DHP類及中樞性鈣離子阻斷劑的使用能減少巴金森氏症的發生風險(aHR:0.71; 95% CI, 0.57–0.90),此效果有劑量累積的效應,使用其他種類降血壓藥物ACEI及ARB在累積高劑量時有潛在保護效果。
持續使用親脂性降血壓藥物statin及DHP類鈣離子阻斷劑可能減少巴金森氏症的發生,未來需要大型長期性追蹤的研究來驗證其保護效果。
zh_TW
dc.description.abstractParkinson disease (PD) is a common neurodegenerative disorder for which causes are diverse and mostly unknown. Given that there is no mechanism-based treatment to ameliorate dopaminergic neuron loss; agents that can attenuate or modify disease processes may play a role in halting the degeneration process of PD.
While using administrative databases to investigate the association of drug use and PD is increasing, concerns arise from the observational nature of the research. Without randomization, the comparison between drug users with nonusers would cause bias from confounding by indication because these two groups of population differed substantially in terms of disease severity, lifestyle factors, patterns of medical utilization, and even physicians’ perspective of their prognosis, which are all associated with the determinant of the outcome. Current literatures studying the use of chronic medications, statin and anti-hypertensive medications, and the risk of Parkinson’s disease (PD) used nonuser as comparison group and demonstrated inconsistent results.
To minimize possible confounding by indication in current literature, we propose two studies that different restriction strategies are used in design to include a relatively homogeneous population. In study one, among the 43,810 statin initiators, continuation of lipophilic statins was associated with a decreased risk of PD (hazard ratio, HR:0.42, 95%C.I.:0.27–0.64) as compared with statin discontinuation. There was no association between hydrophilic statins and occurrence of PD. Long-term use of statins, either lipophilic or hydrophilic, was not significantly associated with PD. In the second study, among 65,001 hypertensive patients with a mean follow-up period of 4.6 years, use of dihydropyridine CCBs, but not non-dihydropyridine CCBs, was associated with a reduced risk of PD (aHR:0.71; 95% CI, 0.57–0.90). There was no association between the use of ACEIs (aHR = 0.80 [0.64–1.00]) or ARBs (aHR = 0.86 [0.69–1.08]) with PD. A potentially decreased association was only found for higher cumulative use of ACEIs (HR = 0.52 [0.34–0.80]) and ARBs (HR = 0.52 [0.33–0.80]).
Continuation of lipophilic statin therapy was associated with a decreased incidence of PD as compared to discontinuation in statin users. Also, centrally-acting dihydropyridine CCB use and high cumulative doses of ACEIs and ARBs may associate with a decreased incidence of PD in hypertensive patients. Further long-term follow-up studies are needed to confirm the potential beneficial effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:00:19Z (GMT). No. of bitstreams: 1
ntu-103-D00849016-1.pdf: 1353317 bytes, checksum: 84caed2f2c0df4857cc4b6daa3db4d40 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1 Abstract 5
2 Introduction 9
3 Paper review 12
3.1 Parkinson’s disease: epidemiology evidence and natural history 12
3.2 Use of statin and the risk of Parkinson’s disease: current literature 14
3.3 Use of anti-hypertensive medication and the risk of Parkinson’s disease 23
3.4 Investigation of drugs use and the risk of Parkinson’s disease: some considerations 28
3.4.1 Nonuser comparison group dilemma: 28
3.4.2 Using disease risk score to control for baseline imbalance 34
3.5 Summary and Gaps 38
4 Aim 40
5 Material and Methods 42
5.1 Data source 42
5.2 Ascertainment of PD 42
5.3 Study 1: Statin discontinuation and the risk of Parkinson’s disease 43
5.4 Study 2: Use of anti-hypertensives and the risk of Parkinson’s Disease 53
6 Results 57
6.1 Statin use and the risk of Parkinson’s disease 57
6.2 Anti-hypertensive medication and the risk of Parkinson’s Disease 72
7 Discussion 85
7.1 Statin discontinuation and PD 85
7.2 Anti-hypertensive medication with PD 88
7.3 Linkage between Parkinson’s disease and cardiovascular disease 91
7.4 Strength 92
7.5 Limitations 92
8 Conclusion and future direction 96
Reference 97
dc.language.isoen
dc.title應用觀察性研究探討藥物使用與發生巴金森氏症之相關性以降血脂藥物(statin)及降血壓藥物為例zh_TW
dc.titleUsing observational study to investigate drugs use and the risk of Parkinson’s disease: taking statin and antihypertensive medication use as an exampleen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee林敏雄,劉仁沛,陳建煒,吳瑞美,林昭維
dc.subject.keyword降血脂藥物,降血壓藥物,巴金森氏症,zh_TW
dc.subject.keywordstatin,anti-hypertensives,Parkinson's disease,en
dc.relation.page102
dc.rights.note未授權
dc.date.accepted2015-01-07
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved